Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент асимметрии использования материала

Использование рассмотренных уравнений для оценки долговечности конструкций с существенно неоднородными полями напряжений связано со значительными трудностями, так как эти поля изменяют характер деформирования материала у вершины трещины. Например, в сварных тавровых соединениях остаточные напряжения приводят к ситуации, когда при действии циклической эксплуатационной нагрузки с коэффициентом асимметрии, равным нулю, коэффициент асимметрии нагружения материала в вершине трещины по мере ее развития изменяется от 0,8 до О, при этом КИН может принимать значения от пороговых до близких к критическим [198]. Следовательно, оценка долговечности такого рода конструкций может выполняться только с помощью уравнений, учитывающих переменную вдоль траектории развития трещины асимметрию нагружения в широком диапазоне СРТ. Как видно из выполненного обзора, такие уравнения являются в основном эмпирическими, содержащими большое количество взаимосвязанных параметров, определяемых только экспериментально на основании статистической обработки данных, что приводит к значительной сложности в получении и использовании этих зависимостей. Поэтому  [c.192]


Схематизация нагрузочных режимов. Для деталей, материал которых чувствителен к асимметрии циклов нагружения, необходимо применять двумерную схематизацию нагрузочного режима. Если схематизация одномерная, то использование в расчетах нагрузочного режима, полученного в виде экстремальных точек процесса (максимумы, размахи, амплитуды), требует, как минимум, нахождения среднего значения процесса по способу ординат или пересечений. Тогда среднее значение коэффициента асимметрии определяется по формуле г = (2з /5гд) — 1, где — среднее значение предела выносливости детали, определяемое по формулам табл. 2.10. 130  [c.130]

В параграфе 5 главы I было показано, что важной характеристикой кинетических диаграмм усталостного разрушения является пороговый коэффициент интенсивности напряжений. С практической точки зрения эта величина имеет большое значение, так как определяет по существу предел выносливости образца или детали с трещиной определенного размера. Как и предел выносливости гладких образцов, пороговый коэффициент интенсивности напряжений, который представляется в виде размаха или максимального значения за цикл [kKth, зависит от коэффициента асимметрии цикла нагружения, окружающей среды, частоты нагружения, температуры и т. п. В некоторых случаях эта характеристика зависит и от толщины образцов 146, 3061. При всех одинаковых условиях пороговый коэс х зициент интенсивности напряжений является постоянной величиной для данного материала при глубине трещины больше определенного размера 158, 233, 246, 258, 263, 280, 315, 336]. Этот размер для каждого материала свой, и чем ниже предел выносливости гладкого образца, тем больше этот критический размер. Для применяемых в практике материалов критическая глубина трещины может быть весьма различной — от 0,05 до 1 мм 1232]. Если глубина трещины ниже критического размера, то значение порогового размаха коэффициента интенсивности напряжений снижается. Причину этого следует видеть в том, что для оценки напряженного состояния материала с трещиной и без нее применяют принципиально различные критерии. При использовании асимптотического распределения напряжений в вершине трещины (критерий — коэффициент интенсивности напрял<ений), длина которой стремится к нулю, коэффициент интенсивности напряжений, определяемый по формуле К — = УаУа, также стремится к нулю. Однако это не значит, что условия продвижения такой малой трещины отсутствуют. Известно, что прочность материала в частности определяется такими характеристиками, как ао,2, Од. В подходах, где пренебрегали трещинами, например в работе [142], интенсивность накопления усталостного повреждения связывается с размахом пластической деформации.  [c.88]


Известны многочисленные попытки на основании статистического экспериментального материала для индикатрис рассеяния в атмосферных дымках выделить отдельные подтипы этого аэрозольного образования. Примером могут служить подробные экспериментальные исследования индикатрис рассеяния видимого излучения в приземном слое атмосферы в различных географических районах, приведенные О. Д. Бартеневой [2] и позволившие осу-ш,ествить классификацию индикатрис рассеяния с использованием коэффициента асимметрии, оценить влияние относительной влажности воздуха на изменения формы индикатрисы. В работе [38 проведено сравнение усредненных значений индикатрис рассеяния со средними значениями метеорологической дальности видимости Sm. Эти первые статистически обеспеченные экспериментальные наблюдения угловых характеристик выявили фундаментальные черты их изменчивости и установили характерные различия между отдельными классами угловых характеристик.  [c.120]

В низкоуглеродистых сталях и других деформационно стареющих материалах наблюдается четкий предел выносливости, т. е. ниже некоторого значения приложенного напряжения усталостная долговечность образцов неограниченно велика. Важность деформационного старения подтверждается так называемым эффектом тренировки образец в течение длительного времени подвергают циклическому нагружению при напряжениях ниже предела выносливости, после чего его усталостная долговечность существенно повышается благодаря увеличению напряжения течения в результате деформационного старения. Ранее считалось, что предел выносливости является характери-ристикой, отражающей сопротивление материала зарождению разрушения (т. е. зарождению усталостной трещины). В настоящее время взгляд на предел выносливости несколько трансформировался. Показано, что усталостная трещина может зарождаться и прорастать через поверхностные слои образца при напряжениях меньше предела выносливости, но не развивается в глубь образца и не приводит к разрушению [263, 423]. Таким образом, наличие предела выносливости не является следствием невозможности зарождения трещины, а скорее неспособности ее распространения в материале при данном уровне напряжений [152]. Данная закономерность позволяет связать предел выносливости с пороговым значением коэффициента интенсивности напряжений AKth, характеризующим отсутствие развития трещины при АК < А/Сгл- Указанный подход был нами использован при прогнозировании влияния асимметрии нагружения на предел выносливости. Подробное изложение полученных по данному вопросу результатов будет приведено в подразделе 4.1.4.  [c.128]


Справочник металлиста Том5 Изд3 (1978) -- [ c.8 , c.61 ]



ПОИСК



Асимметрия

Использование материалов

Коэффициент асимметрии

Коэффициент асимметрии. — Материалы

Коэффициент использования материала



© 2025 Mash-xxl.info Реклама на сайте