Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Продольно-трансверсальный модуль волокнистых композиций

Продольная прочность 269, 272—274 Продольно-трансверсальный модуль упругости при сдвиге 120—122 волокнистых композиций 264  [c.308]

Большинство полимерных волокнистых композиций обладают резко выраженной анизотропией свойств и, как указывалось в гл. 2, их упругость должна характеризоваться по крайней мере пятью или шестью модулями упругости. Если волокна ориентированы в одном направлении (однонаправленные композиции) (см. рис. 2.1), то из этих модулей упругости важнейшее значение имеют четыре продольный модуль Юнга (растягивающее напряжение направлено вдоль оси ориентации волокон) трансверсальный модуль Юнга Ет (растягивающее напряжение направлено перпендикулярно оси ориентации волокон) продольно-трансверсальный модуль упругости при сдвиге (сдвиговое напряжение действует вдоль оси ориентации волокон) трансверсальный модуль упругости при сдвиге Отт (сдвиговое напряжение Действует перпендикулярно оси ориентации волокон).  [c.263]


Формулы содержат упругие константы Еас (продольный модуль упругости) и Ей (трансверсальный модуль упругости). Вас мол<но рассчитать с помощью линейного правила смеси для модуля упругости, т. е. с помощью параллельной модели, а Et — С помощью модели, предложенной Хашином и Роузеном. Расчетные формулы для Et , недавно были проанализированы Роузеном [14]. Достаточно много работ посвящено экспериментальному определению коэффициентов расширения однонаправленных волокнистых материалов. Недавно авторами настоящей главы было проведено исследование, в котором оценивали термическое расширение композиций полиэфирных смол со стеклянными и углеродными волокнами. Образцы получали методом вакуумной пропитки, ос определяли с помощью линейного кварцевого дилатометра, а — с помощью объемного дилатометра. Значение ащ рассчитывали, подставляя полученные экспериментальные данные для Пас и в формулу (6.25) и принимая, что a2=az=at - Результаты исследования приведены в табл. 6.13 и 6.14, а их графическое изображение— на рис. 6.19 и 6.20.  [c.279]

В этом уравнении продольный и трансверсальный модули, (Е1 и Ет) могут быть получены экспериментально при испытании однонаправленных волокнистых композиций или рассчитаны по уравнениям (8.1) и (8.2).  [c.267]

Волокнистые композиции отличаются анизотропией свойств и обладают очень высокой прочностью и жесткостью в одном или нескольких направлениях. Для однонаправленных волокнистых композиций по их составу и свойствам компонентов могут быть рассчитаны значения всех пяти или шести независимых модулей упругости с достаточной степенью точности по сравнительно простым уравнениям. Модули упругости слоистых волокнистых композиций или композиций с хаотически распределенными волокнами могут быть также легко рассчитаны. Что же касается прочности, то она может быть предсказана очень приблизительно. Некоторые показатели прочности, в частности, продольная прочность при растяжении, определяются главным образом прочностью волокон, тогда как трансверсальная прочность при растяжении или межслойная сдвиговая прочность — свойствами матрицы. Прочность при растяжении и ударная прочность сильно зависят от длины волокон и прочности адгезионной связи волокно—матрица. Для обеспечения высокой прочности при растяжении длина волокон должна возрастать при снижении прочности адгезионной связи. Наоборот, ударная прочность обычно возрастает при уменьшении прочности связи волокно—матрица и сокращении длины волокон до определенного предела.  [c.289]



Механические свойства полимеров и полимерных композиций (1978) -- [ c.264 ]



ПОИСК



Волокнистость

Композиция

Трансверсальность



© 2025 Mash-xxl.info Реклама на сайте