Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод лазерной вспышки

МЕТОД ЛАЗЕРНОЙ ВСПЫШКИ  [c.431]

Перечень методов измерения температуропроводности приведен в [61]. В настоящее время примерно 75 % данных по температуропроводности получено методом лазерной вспышки. В этом методе фронтальная поверхность малого образца дискообразной формы подвергается равномерному облучению короткой вспышкой (рис. 7.48). Источником энергии обычно служит лазер или импульсная лампа. Время облучения составляет около миллисекунды и менее. Измеряется изменение температуры на тыльной стороне образца. Температуропроводность образца в направлении его толщины определяется из решения одномерного нестационарного линейного уравнения теплопроводности по формуле  [c.432]


Рис. 7.48. Схема измерений температуропроводности методом лазерной вспышки Рис. 7.48. <a href="/info/672388">Схема измерений</a> температуропроводности <a href="/info/124446">методом лазерной</a> вспышки
Рис. 7.49. Схема измерений температуропроводности модифицированным методом лазерной вспышки Рис. 7.49. <a href="/info/672388">Схема измерений</a> температуропроводности <a href="/info/112609">модифицированным методом</a> лазерной вспышки
Чаще всего метод реализуют с помощью импульсного лазера (метод лазерной вспышки, МЛВ). МЛВ применим при следующих допущениях образец теплоизолирован, длительность импульса вспышки Гв Гу, где Гт - характерное время распространения теплового импульса в материале образца, распределения энергии по сечению лазерного пучка и коэффициента поглощения по поверхности образца однородны, образец однороден (гомогенен) и не меняет своих ТФХ в диапазоне температур нафева.  [c.541]

По сравнению со вторым изданием разд. 7 подвергся существенной переработке. В нем значительно шире представлены характеристики приборов и установок отечественного производства, а также приборов, производимых ведущими зарубежными фирмами, для определения теплофизических свойств веществ в условиях заводской лаборатории рассмотрены методы и установки, появившиеся после вь[хода в свет 2-го издания справочной серии. Принципиально новым является параграф, в котором описаны современные динамические методы определения теплофизических свойств при экстремальных параметрах состояния методы нагрева образца импульсом электрического тока, лазерной вспышки, ударного сжатия.  [c.9]

В 1966 г. автором был сделан мультипликационный фильм на 35-мм пленке с голографической записью механически оживляемого объекта. По этому поводу было много шума в прессе, утверждалось даже, что это предтеча полнометражных голографических художественных фильмов Мечты не только остались мечтами, но сегодня даже нет надежды на их осуществление. Тем не менее голографическое кино такого типа может найти полезное применение. С помощью голографических методов можно изучать кратковременные процессы — объекты, быстро движущиеся через фокальную плоскость. Поскольку качество голограмм не зависит от глубины фокуса, отдельные кадры голографического фильма можно использовать для перемещения исследуемого объекта в резкий фокус микроскопа. Если применяются очень короткофокусные объективы, изображение должно находиться в плоскости эмульсии или над ней. Очевидно, чтобы получить изображение без смаза, голографические фильмы следует снимать при очень коротких экспозициях В настоящее время имеется вполне достаточное число доступных импульсных лазерных источников, позволяющих получать на пленках кадры, близкие по свойствам к фотографии со вспышкой в наносекундном диапазоне.  [c.493]


В другом методе фотопластина движется непрерывно, а засветка производится импульсной ксеноновой лампой с длительностью вспышки около б мкс. При этом длительность выдержки коррелирована со скоростью перемещения-пластины и устанавливается автоматически.. Точность перемещения по шагу составляет 1.25 мкм. Применение методов оптического сканирующего луча и лазерных Интерферометров, обеспечивающих перемещения координатного стола, дает точность отсчета в 0.25 -мкм.  [c.77]

Модуляция добротности в описанном выще виде не подходит для короткоживущих лазерных уровней — в этом случае применяется другой способ создания коротких импульсов большой мощности, называемый модуляцией добротности с импульсным открыванием резонатора. В отличие от предыдущего метода модуляций добротности поле излучения нарастает в резонаторе из двух первоначально полностью (или почти полностью, насколько это оказывается возможным) отражающих зеркал. Затем в определенный момент, когда поле излучения внутри резонатора достигнет почти максимальной интенсивности, излучение выводится из резонатора с помощью электрооптического затвора типа ячейки Поккельса или призменного поляризатора Глана (рис. 5.14) либо с помощью оптоакустического дефлектора. Недавно с использованием импульсного открывания резонатора было достигнуто некоторое сжатие импульса энергии излучения в лазере на органическом красителе, накачка в котором осуществлялась с помощью лампы-вспышки.  [c.188]

Поскольку эффект КР слабый , то необходимо использовать высокочувствительную регистрирующую аппаратуру. Величины принимаемых сигналов, с которыми приходится иметь дело при лидарном КР-зондировании, порядка 10" ... 10 фотонов в импульсе (10" Вт). Для сравнения приведем такие данные фон неба в ясную ночь 10" ...10" фотонов в импульсе (10" Вт), в сумерки 10" .... .. 10 фотонов в импульсе (10" Вт). Поэтому в качестве приемников применяются ФЭУ с большим квантовым выходом и коэффициентом усиления 10 при темновом токе, эквивалентном сигналу 10" ...10 фотонов в импульсе (10 .... ..10" Вт), малые нагрузочные сопротивления (25... 100 Ом) и широкополосные усилители (100...300 МГц). В большинстве случаев в лидарах применяется метод счета фотонов состробированием. Минимальная мощность, которую можно регистрировать таким методом, порядка 10 ... 10" Вт. Создание многоканальной системы регистрации позволяет одной лазерной вспышкой определить профиль (распределение) газов на трассе луча. Такая система (схематически показана на рис. 22.4) работает по следующему принципу. Каждый каскад системы представляет собой счетчик импульсов. Сигнал с ФЭУ последовательно подается на каждый счетчик с установленным заранее интервалом времени  [c.223]

Помимо ускорителей частиц, существуют гораздо более простые и более дешевые устройства, которые со временем также смогут использоваться для инициирования самоподдерживаю-щейся термоядерной реакции. Это лазеры, с помощью которых можно облучать мишени из дейтерия световыми импульсами чрезвычайно сконцентрированной энергии Ч В настоящее время самые крупные лазерные установки, по-видимому, способны давать световые вспышки с энергией в импульсе, пока еще в 100 раз меньшей, чем та, которая необходима для самоподдерживающегося термоядерного процесса. Можно предположить, что уже в ближайшем будущем суперлазеры смогут инициировать неуправляемые термоядерные реакции в водородных бомбах. Сейчас наиболее известным (или, вернее сказать, общепризнанным) методом детонирования водородной бомбы является взрыв атомной бомбы, который обеспечивает получение температур, необходимых для начала термоядерной реакции (рис. 34). Поскольку продукты термоядерной реакции имеют очень низкий уровень радиоактивности, то все радиоактивные осадки, связанные со взрывом водородной бомбы, образуются при первоначальном атомном взрыве. Таким образом, не касаясь военных аспектов этой проблемы, можно сказать, что водородные бомбы, детонируемые лазером и лишенные тем самым радиоактивной опасности, предоставят заманчивую возможность мирного ис-  [c.105]

Метод измерения времени затухания люминесценции в твердых и жидких лазерных средах в принципе несложен. Типичная схема экспериментальной установки [72] представлена на фиг. 5.14. Для возбуждения берется небольшая лампа-вспышка (FX-12) с постоянной времени, составляюш,ей несколько микросекунд. Она снабжена фильтром-кожухом, отсекаюш.им спектр люминесценции. Приемником служит фотоумножитель с интерференционным фильтром, который пропускает только нужный свет люминесценции. Для уменьшения рассеянного света предусматривают соответствующую линзу и диафрагму. Кривую затухания, развернутую на экране осциллографа, снимают фотоприставкой фирмы Polaroid.  [c.291]


Согласно табл. 3.6, большинство загрязняющих веществ имеют полосу поглощения в инфракрасной части спектра. Однако у некоторых из них (например, у Оз, ЫОг, ЗОг и небольшого числа металлов) абсорбционные характеристики лежат в видимой или ультрафиолетовой спектральной области. Ряд исследователей использовали метод дифференциального поглощения и рассеяния в этих спектральных областях для измерения концентрации молекул ЗОг, Оз и ЫОг в атмосфере. Для демонстрации того, что в натурных условиях можно добиться указанных в табл. 3.6 значений чувствительности при измерении концентрации этих трех загрязняющих веществ, в работах [398, 193] использовали кювету длиной 2,5 м на расстоянии 306 м. В работах [198, 399] в натурных условиях на трассе длиной 0,8 км при измерении содержания ЗОг в атмосфере была достигнута чувствительность 10 . Измерения проводили с помощью перестраиваемого лазера на красителе с удвоением частоты, накачиваемого лампой-вспыщкой. Выходная энергия составляла 100 мкДж, длительность импульса 1,3 мкс, ширина линии — менее 0,03 нм. Несколько позднее [400, 401] лазер на красителе, накачиваемый лампой-вспышкой, также использовали для измерения концентрации N02 в воздушном бассейне над Редвуд-Сити (шт. Калифорния). В этом случае лазер генерировал импульсы длительностью 700 не с длиной волны 448,1 и 446,5 нм и выходной энергией 10 мДж. Угол расходимости лазерного луча был равен 1,3 мрад, частота повторения импульсов—5 импульс/с, щирина линии — 0,2 нм. Приемная оптическая система включала телескоп Ньютона с диаметром зеркала 51 см и ряд узкополосных интерференционных фильтров. Некоторые результаты, полученные с помощью этой системы, показаны на рис. 9.51. Как нетрудно заметить, результаты лидарных измерений хорошо согласуются с данными, полученными по стандартной методике при условии, что скорость ветра во время измерений составляла менее 5 км/ч.  [c.452]


Смотреть страницы где упоминается термин Метод лазерной вспышки : [c.219]    [c.168]    [c.124]   
Смотреть главы в:

Теоретические основы теплотехники Теплотехнический эксперимент Книга2  -> Метод лазерной вспышки


Теоретические основы теплотехники Теплотехнический эксперимент Книга2 (2001) -- [ c.431 ]



ПОИСК



Вспышка 451, XIV

Лазерное (-ая, -ый)

Методы лазерные



© 2025 Mash-xxl.info Реклама на сайте