Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение акустооптических дефлекторов

Применение акустооптических дефлекторов  [c.65]

В гл. 9 было показано, что при взаимодействии световых пучков со звуковой волной в фотоупругой среде возникает много интересных явлений. Эти явления (например, брэгговская дифракция) могут быть использованы при создании модуляторов света, дефлекторов пучков, перестраиваемых фильтров, анализаторов спектра и устройств обработки сигналов. Использование акустооптического взаимодействия позволяет модулировать лазерное излучение или обрабатывать с высокой скоростью информацию, переносимую излучением, поскольку при этом отпадает необходимость в использовании каких-либо механических перемещающихся элементов. Это свойство аналогично электрооптической модуляции с той лишь разницей, что при акустооптическом взаимодействии вместо постоянных полей применяются ВЧ-поля. Последние достижения в применениях акустооптических устройств обусловлены главным образом наличием лазеров, которые генерируют интенсивные когерентные световые пучки, развитием эффективных широкополосных преобразователей, генерирующих упругие волны с частотами вплоть до микроволновых, а также открытием веществ, обладающих замечательными упругими и оптическими свойствами. В данной главе мы изучим различные устройства, основанные на брэгговской дифракции. Будут рассмотрены их характеристики пропускания, эффективность дифракции, рабочая полоса частот и другие параметры.  [c.393]


Одним из наиболее важных применений акустооптического взаимодействия являются дефлекторы оптических пучков. Принцип работы акустооптических дефлекторов в основном такой же, как и у модуляторов, основанных на брэгговской дифракции. Единственное различие состоит в том, что теперь изменяется не амплитуда, а частота звуковой волны. Использование акустооптического взаимодействия позволяет создавать дефлекторы пучков с высоким разрешением. При этом могут быть созданы сканирующие дефлекторы как с произвольной выборкой, так и непрерывно действующие. Основной принцип действия таких устройств иллюстрирует рис. 10.4, а соответствующее объяснение можно дать с помощью рис. 10.5. Для многих приложений важными параметрами таких устройств являются число разрешимых элементов пучка, быстродействие и эффективность.  [c.410]

Применение тех или иных электронных устройств в значительной степени зависит от того, какими были выбраны главные элементы схемы. Например, если используются акустооптические дефлекторы, то для управления ими необходимы высокочастотные генераторы с линейно регулируемым напряжением. При использовании электрооптическиX дефлекторов возникает необходимость в программно-управляемом высоковольтном источнике питания.  [c.438]

В акустооптических дефлекторах эта проблема, как правило, преодолевается использованием анизотропной (межмодовой) дифракции в специальной широкополосной геометрии, предложенной впервые в [9.112] (рис. 5.12, а). Ее применение позволяет расширить допустимый угол отклонения продифрагировавшего пучка до величины  [c.246]

Акустооптика изучает взаимодействие оптических волн с акустическими в различных веществах. Возможность такого взаимодействия впервые предсказал Бриллюэн в 1922 г., а затем ее экспериментально проверили в 1932 г. Дебай и Сиарс в США и Люка и Бигар во Франции. При взаимодействии света со звуковыми волнами наиболее интересное явление представляет собой дифракция света на акустических возмущениях среды. При распространении звука в среде возникает соответствующее поле напряжений. Эти напряжения приводят к изменению показателя преломления. Такое явление называется фотоупругим эффектом. Поле напряжений для плоской акустической волны является периодической функцией координат. Поскольку показатель преломления среды претерпевает периодическое возмущение, возникает явление брэгговской связи, как показано в гл. 6. Акустооптическое взаимодействие является удобным способом анализа звуковых полей в твердых телах и управления лазерным излучением. Модуляция света при акустооптическом взаимодействии находит многочисленные применения, в том числе в модуляторах света, дефлекторах, устройствах обработки сигналов, перестраиваемых фильтрах и анализаторах спектра. Некоторые из этих устройств мы рассмотрим в следующей главе.  [c.343]


Развитие и оптимизация параметров элементов интегральной акустооптики связано с применением волноводных слоев с большим значением коэффициента акустооптического качества, малыми акустическими потерями в гиперзву-ковом диапазоне, с совершенствованием систем для возбуждения ПАВ. Например, в брэгговском акустооптическом модуляторе, разработанном для применения в радиоастрономии, ширина полосы устройства по уровню 3 дБ составила 530 МГц при центральной частоте 1,74 ГГц [11]. Оптические волноводы получены термодиффузией титана в ниобат лития. Для возбуждения поверхностных акустических волн применяли четырехсекционный встречно-штыревой преобразователь со сдвигом секций на 3/4 длины акустической волны. При электрической мощности 40 мВт эффективность дифракции в акустооптической ячейке составляла 0,1 %. Для расширения области фазового синхронизма и увеличения рабочей полосы интегральных акустооптических устройств рассмотрены взаимодействия поверхностных оптических и акустических волн на скрещивающихся пучках, а также взаимодействия оптических поверхностных волн с акустическими пучками, для генерации которых использованы встречно-штыревые преобразователи с наклонными штырями [11]. При центральной частоте 615 МГц полоса дефлектора составляла 430 МГц, а эффективность дифракции — 16 % при уровне мощности управляющего сигнала 200 мВт. Преобразователь состоит из двух последовательно соединенных секций, повышающих сопротив-  [c.150]

Излагается теория акустооптического взаимодействия в из тройных и анизотропных материалах. Рассматриваются такие пр боры, как модуляторы, дефлекторы, фильтры, процессоры. Опис вается принцип действия, конструкция, особенности изготовлени характеристики, области применения. Приводятся параметры на более перспективных акустооптических материалов видимого и и фракрасного диапазонов.  [c.2]

Излагается теория акустооптического взаимодействия в изотроп ных и анизотропных материалах. Рассматриваются такие приборы, ка модуляторы, дефлекторы, фильтры, процессоры. Описываются принци действия, конструкция, особенности изготовления, характеристики, обла Tti применения. Приводятся параметры наиболее перспективных аку стооптических материалов видимого и инфракрасного диапазонов.  [c.112]


Смотреть страницы где упоминается термин Применение акустооптических дефлекторов : [c.30]   
Смотреть главы в:

Акустооптические устройства и их применение  -> Применение акустооптических дефлекторов



ПОИСК



Акустооптические дефлекторы

Дефлектор



© 2025 Mash-xxl.info Реклама на сайте