Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Формулировка задачи относительно функции тока

Формулировка задачи относительно функции тока  [c.171]

Перейдем к формулировке граничных ус.ловий к уравнению (2. 4. 4). Будем рассматривать внешнюю задачу обтекания, заключающуюся в определенип функции тока, вихря скорости для течения жидкости вне пузырька газа. Считаем, что жидкостный поток является симметричным относительно 6 = 0 и б=7г, что означает отсутствие отрыва в кормовой области пузырька. Тогда = 0, 9 = 0 при 0 = 0, (2.4.5)  [c.31]


Значительное развитие в последние годы получили различные варианты метода интегральных ураннений [104—113]. При использовании этого подхода модель электродинамического объекта представляет собой некоторую систему интегральных уравнений относительно функций, заданных на границах тел с различными электрофизическими параметрами. В зависимости от конкретных особенностей решаемой задачи и используемого метода эти функции могут иметь смысл плотности заряда, тока, компонентов электрического либо магнитного полей и т. д. Существенно, что размерность фактически решаемой задачи оказывается меньшей, чем исходной. Это обеспечивает возможность исследования весьма сложных объектов. Кроме того, системы интегральных уравнений хорошо изучены в математической физике теоретический анализ интегральной формулировок электродинамических задач позволяет получить условия их разрешимости, едииственности решения и т. д. Формулировки электродинамических задач в виде интегральных уравнений выгодны также с точки зрения численного решения последних. Численные методы решения систем интегральных уравнений разработаны достаточно подробно [113]. Результаты использования метода интегральных уравнений для построения моделей некоторых типов ЛП, а также неоднородностей в Них приводятся в [45, 107, 111].  [c.34]


Смотреть главы в:

Метод конечных элементов в механике жидкости  -> Формулировка задачи относительно функции тока



ПОИСК



Формулировка задачи

Формулировка задачи относительно функции тока и завихренности

Функция тока



© 2025 Mash-xxl.info Реклама на сайте