Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Иррациональные числа вращения и теория КАМ

Так как поворот на иррациональный угол строго эргодичен (см. теорему Кронекера — Вейля о равномерном распределении 4.2.1) и так как строгая эргодичность, конечно же, инвариантна относительно топологического сопряжения, любой транзитивный гомеоморфизм 5 с иррациональным числом вращения строго эргодичен.  [c.403]

Если к условиям, рассмотренным в предыдущей главе, добавить некоторые условия дифференцируемости, то можно установить несколько новых фактов из теории отображений окружности. В конце п. 11.2.6 мы наметили топологическую классификацию гомеоморфизмов окружности с иррациональными числами вращения. Если сосредоточить внимание на достаточно гладких диффеоморфизмах (см. теорему 12.1.1), ситуация существенно изменится. Предложение 12.2.1 показывает, что условие на гладкость является почти точным. Число вращения тогда становится полным инвариантом топологического сопряжения. Это несколько напоминает случай гиперболических динамических систем (см., например, теоремы 2.6.1 и 2.6.3). С другой стороны, классификация диффеоморфизмов окружности с точностью до дифференцируемого сопряжения возможна только для чисел вращения, удовлетворяющих дополнительным арифметическим условиям. В 12.3 мы докажем локальный результат такого типа в аналитической ситуации, а в 12.5 и 12.6 покажем, что в отсутствии такого арифметического условия сопряжение может обладать разного рода патологиями. В заключение в 12.7 мы покажем, что определенный аспект поведения преобразования поворота на иррациональный угол, а именно егО эргодичность относительно меры Лебега, сохраняется для всех достаточно гладких диффеоморфизмов окружности.  [c.405]


Разнообразные модули дают существенную, хотя и не полную информацию о гладкой эквивалентности в окрестности вращения i . Число вращения (см. определение 11.1.2) является С -модулем, и для некоторых иррациональных а его значения определяют класс гладкой эквивалентности (см. теорему 12.3.1).  [c.73]

В настоящей главе мы расширим оба аспекта этого анализа таким образом, чтобы включить в него орбиты с иррациональными числами вращения. При этом будет интенсивно использоваться структурная теория гомеоморфизмов окружности, разработанная в гл. 11. В 13.2 мы сконцентрируем внимание на изучении свойства сохранения порядка, а в 13.3-13.4 — на вариационном описании. Наиболее впечатляющий результат, который мы получим, состоит в том, что в то время как для гомеоморфизмов окружности орбиты типа Данжуа, замыкания которых — минимальные нигде ни плотные множества, появляются только для отображений низкой регулярности (теорема 12.1.1), для закручивающих отображений подобные орбиты, замыкания которых (множества Обри — Мазера) проектируются в нигде не плотные канторовы множества на окружности, для произвольно гладких систем являются скорее правилом, чем исключением. Обоснованием этого замечания служат, в частности, результаты 13.5.  [c.426]

O, Ф(то(1(12я) —координаты на торе [7]. Если число вращения иррационально, то движение условно-периодично и каждая траектория обматывает тор всюду плотно. Если число вращения рационально, то на торе существуют циклы если циклы невырождены, то их четное число (половина — устойчивые, половина—неустойчивые), и остальные траектории притягиваются к ним при /- - сж. Число вращения ц(е) в системе общего положения представляет собой непрерывную кусочно-постоянную на открытом всюду плотном множестве функцию от е (вроде кан-торовой лестницы, но только суммарная относительная мера интервалов постоянства на отрезке [О, ео] стремится к нулю прн со- О). Существование интервалов постоянства связано с наличием на торе невырожденных циклов при малом изменении е такие циклы не исчезают и, следовательно, число вращения не изменяется. При е- 0 в системе общего положения на торе происходит бесконечная последовательность бифуркаций рождения и исчезновения циклов. Все эти явления не улавливаются формальной процедурой теории возмущений.  [c.164]


Смотреть страницы где упоминается термин Иррациональные числа вращения и теория КАМ : [c.185]    [c.443]    [c.519]   
Смотреть главы в:

Регулярная и стохастическая динамика  -> Иррациональные числа вращения и теория КАМ



ПОИСК



Иррациональные числа

Число вращения

Число вращения иррациональное



© 2025 Mash-xxl.info Реклама на сайте