Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоотдача к зернистому слою

При сжигании малозольных топлив для увеличения теплоотдачи в слой вводят наполнители в виде инертных зернистых материалов шлак, песок, доломит. Доломит связывает оксиды серы (до 90 %), в результате чего снижается вероятность возникновения низкотемпературной коррозии. Более низкий уровень температур газов в кипящем слое способствует уменьшению образования в процессе горения оксидов азота, при выбросе которых в атмосферу загрязняется окружающая среда. Кроме того, исключается шлакование экранов, т. е. налипание на них минеральной части топлива.  [c.42]


Теплоотдача к зернистому слою  [c.138]

Наиболее эффективным и надежным способом интенсификации теплообмена при кипении является применение пористых металлических покрытий. При этом пористая структура образуется либо в результате покрытия поверхности трубы тонкими металлическими сетками, либо нанесением на нее металлического порошка определенной зернистости. При этом образуется пористый слой с разветвленной системой сообщающихся между собой капиллярных каналов, через которые происходят эвакуация пара и подпитка пористой структуры жидкостью, подтекающей сюда под действием сил поверхностного натяжения. Кипение происходит как внутри пористого покрытия, так и на его поверхности. Высокая ннтен-сивность теплообмена свидетельствует о том, что пористая структура создает весьма благоприятные условия для зарождения и роста паровых пузырей. Например, авторы работы [137] указывают, что при кипении н-бутана (р= 1,27-10 Па) на гладкой трубе образование паровых пузырей по всей ее поверхности наблюдалось только при = 35 кВт/м2, а дд трубе с пористым покрытием вся поверхность трубы была занята паровыми пузырями уже при 7=1,5 кВт/м . Эти и многие другие опыты показали, что устойчивое развитое кипение на поверхностях с пористыми покрытиями устанавливается при весьма незначительных температурных напорах (перегревах жидкости). Основной причиной этого является то, что в данном случае поверхности раздела фаз возникают внутри пористого слоя [54, 130, 146]. При выбросе паровой фазы из пористой структуры в последней всегда остаются паровые включения, в которые испаряется тонкая пленка жидкости, обволакивающая стенки капиллярных каналов [54, 130]. В соответствии с моделью автора [14G] испарение микропленки происходит по всей поверхности капиллярного канала, высота которого равна толщине пористого покрытия. Таким образом, элементы пористой структуры сами являются центрами зарождения паровой фазы. Так как диаметр капиллярных каналов (10- —10 м) больше критического диаметра обычного центра парообразования, то испарение пленки в паровые включения или с поверхности капилляра требует значительно меньшего перегрева жидкости. Не менее важное значение имеет и то, что в пористой структуре перегрев поступающей в капилляры жидкости происходит в условиях весьма высокой интенсивности теплообмена. Действительно, при таких малых диаметрах капилляров движение жидкости в них всегда ламинарное. В этом случае значение коэффициента теплоотдачи определяется из условия (ас ) Д = 3,65. При диаметре капилляров 10- —10 м значение а получается равным 5-103—5-Ю Вт/(м2-К). В условиях сильно развитой поверхности пористого слоя только за счет подогрева жидкости можно отводить от стенки весьма большие тепловые потоки. Снижение необходимого перегрева, а также интенсивный подогрев жидкости существенно уменьшают время молчания центров парообразования, что также способствует интенсификации теплообмена на трубах с пористыми структурами.  [c.219]


Указанные исследования отличаются друг от друга по методике и точности эксперимента, а также и способам обработки экспериментального материала наряду с этим важной общей чертой является то, что эксперименты во всех случаях проводились с неподвижным слоем кусков из различных материалов. Большая часть опытов проводилась со слоем из шаров разного диаметра от 3 до 50 мм, изготовленных из чугуна, стали, свинца и стекла [171, 172, 174—177]. Часть исследователей [171, 173, 174] экспериментировала с кусковым и зернистым материалом неправильной формы, приготовленным из железной руды, известняка, кокса, угля, боя различных кирпичей и т. д. Большая часть опытов проводилась с воздухом при низких температурах (< 300°), и поэтому изучалась только теплоотдача конвекцией. Лишь только в опытах Фурнаса [171] с железной рудой и керамикой температура теплоносителя — газа достигала 1100°. Исследования Фурнаса характеризуются наибольшей подробностью и по результатам отличаются от данных других исследователей. Оценивая эти результаты [165, 178], ряд авторов не учитывает в некоторых из этих опытов Фурнаса влияния лучистой составляющей на величину коэффициента теплоотдачи.  [c.300]

Саркиц В. Б., Теплоотдача от взвешенного слоя зернистых материалов к поверхности теплообмена, Канд. диссертация, Ленинград, 1059.  [c.471]


Смотреть страницы где упоминается термин Теплоотдача к зернистому слою : [c.564]    [c.198]    [c.198]    [c.429]    [c.563]    [c.563]    [c.109]    [c.399]    [c.478]   
Смотреть главы в:

Справочник по теплопередаче  -> Теплоотдача к зернистому слою



ПОИСК



Теплоотдача



© 2025 Mash-xxl.info Реклама на сайте