Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения малых колебаний гибких стержней

Е.Л. Николаи (1928) был, по всей вероятности, первым, кто рассмотрел задачу об устойчивости упругой системы, нагруженной следящими силами. В его работе исследуется устойчивость прямолинейной формы гибкого стержня, один конец которого заделан, а другой — нагружен сжимающей силой и скручивающим моментом. Было установлено, что в случае, когда вектор момента является тангенциальным (т. е. остается направленным по касательной к изогнутой оси стержня), не существует никаких иных форм равновесия, кроме прямолинейной. Отсюда Е. Л. Николаи сделал вывод, что обычный метод определения критической силы в данной задаче неприменим. Составив уравнение малых колебаний стержня около прямолинейной формы равновесия, Е. Л. Николаи установил, что это равновесие неустойчиво при любых значениях скручивающего момента (если не учитывать демпфирование и рассматривать стержень круглого сечения). В следующей работе (1929) было показано, что при наличии неравных изгибных жесткостей прямолинейная форма стержня является устойчивой при достаточно малой величине крутящего момента. При этом существует критическая величина момента, начиная с которой прямолинейная форма перестает быть устойчивой. Результаты Е. Л. Николаи были развиты Г. Ю. Джанелидзе (1939) и И. Е. Шашковым (1941, 1950).  [c.350]



Смотреть главы в:

Механика гибких стержней и нитей  -> Уравнения малых колебаний гибких стержней



ПОИСК



Колебания Уравнения колебаний

Колебания малые

Стержень гибкий

Стержень малых колебаний

Уравнения малых колебаний

Уравнения малых колебаний стержней



© 2025 Mash-xxl.info Реклама на сайте