Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фотоэлектрические явления в р — -переходе

J2.3. ФОТОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В р-п-ПЕРЕХОДЕ  [c.327]

Если в оптическом переходе участвует один фотон, то такой переход (такой процесс взаимодействия излучения с веществом) называют однофотонным. Однофотонный переход сопровождается либо рождением (испусканием), либо уничтожением (поглощением) фотона, причем испускание фотона может быть либо спонтанным, либо вынужденным. До сих пор мы имели дело только с однофотонными переходами (однофотонными процессами). Они определяют свойства теплового излучения и оптические спектры вещества, лежат в основе как фотоэлектрических, так и люминесцентных явлений. С однофотонными процессами связано и нелинейно-оптическое явление просветления среды.  [c.219]


Первые попытки применения квантово-механической теории энергетического состояния электронов в диэлектриках и полупроводниках к интерпретации фотохимических и фотоэлектрических явлений в щелочно-галоидных кристаллах принадлежат П. С. Тар-таковскому [71]. На основе имевшихся в то время экспериментальных данных и общих соображений об энергетических уровнях в кристаллах Тартаковским впервые была построена схема энергетических уровней для ряда щелочно-галоидных соединений с учетом локальных электронных состояний различных центров окраски. Анализируя электронные переходы между различными уровнями энергии кристалла, можно было объяснить ряд оптических и фотоэлектрических свойств окрашенных кристаллов ще-лочно-галоидных соединений с единой точки зрения. Однако в отличие от полупроводников, для которых свет в области их фундаментального поглощения является фотоэлектрически активным, в щелочно-галоидных кристаллах не наблюдается внутреннего фотоэффекта под действием света в области первой полосы собственного поглощения. По этой причине попытки применения зонной теории к толкованию всей совокупности явлений, связанных с собственным поглощением, фотопроводимостью и люминесценцией щелочно-галоидных кристаллов наталкивались на существенные затруднения. Некоторые фундаментальные экспериментальные факты относительно свойств окрашенных щелочно-галоидных кристаллов не получили объяснения ни в энергетической схеме Тарта-ковского, ни в подобных более всеобъемлющих схемах, предлагавшихся позднее. В частности, оставалась совершенно непонятной сама возможность образования в кристалле столь устойчивой окраски под действием света или рентгеновых лучей, какая в действительности наблюдается у щелочно-галоидных кристаллов. В самом деле, при образовании в процессе фотохимического окрашивания свободных электронов, локализующихся затем на уровнях захвата, в верхней зоне заполненных уровней энергии должны образоваться свободные положительные дырки. Вследствие диффузии этих дырок в верхней зоне заполненных уровней вероятность их рекомбинации с электронами, локализованными в центрах окраски, должна быть достаточной, чтобы кристалл быстро обесцветился даже в темноте. Между тем, известно, что окраска кристалла весьма устойчива и сохраняется в темноте очень продолжительное время. Возможность локализации положительных дырок в предлагавшихся квантово-механических моделях не рассматривалась.  [c.30]

Большую группу составляют полупроводниковые приборы, использующие фотоэлектрические явления в полупроводниках. К ним относятся вентильные фотоэлементы и фотодиоды — приборы, в которых использовано явление генерации э. д. с. в р—и-переходе под действпе.м света. Вентильные элементы используют в фотографии и кинематографии, для преобразования солнечной энергии в электрическую, а фотодиоды, в которых под действием света происходит резкое возрастание тока, применяют в схемах считывания информации с перфорированной ленты в электронно-счетных машинах.  [c.249]


После изложенных соображений, касающихся существа предмета (квантовой оптики), обратимся к данному учебному пособию. Оно состоит из четырех частей 1. Развитие фотонных представлений. 2. Физика микрообъектов. 3. Квантовооптические явления. 4. Теоретические основы квантовой оптики. В первой части на основе ставших классическими работ Планка, Бора, Эйнштейна рассматриваются рождение и становление квантовой теории света, излагаются свойства фотона и фотонных ансамблей, демонстрируется переход от волновых представлений к квантовым. Во второй части анализируются некоторые принципиальные вопросы квантовой физики это позволяет объяснить интерференционные эффекты на корпускулярном языке. В третьей части приводятся необходимые сведения из физики твердого тела и затем обстоятельно рассматриваются три группы оптических явлений фотоэлектрические, люминесцентные, нелинейно-оптические эти явления иногда объединяют термином квантово-оптические . Вопросы, излагаемые в указанных трех частях пособия, составляют содержание раздела Квантовая природа света ,  [c.5]

Для приборов, основанных на фотоэлектрических эффектах, характерен непосредственный переход лучистой энергии фотонов в энергию освобождаемых электронов. Поскольку природа гаммы явлений, сопровождающих такое превращение, значительно отличается от природы лучистого теплообмена, приемники этой группы мало используются для теплометрических измерений. Главным их недостатком является большая спектральная неоднородность чувствительности.  [c.25]


Смотреть страницы где упоминается термин Фотоэлектрические явления в р — -переходе : [c.134]    [c.364]    [c.378]    [c.259]    [c.354]   
Смотреть главы в:

Физические основы конструирования и технологии РЭА и ЭВА  -> Фотоэлектрические явления в р — -переходе



ПОИСК



Фотоэлектрические явления

Явление



© 2025 Mash-xxl.info Реклама на сайте