Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вероятность разрушения слоистого композита

Рассмотрим двумерный слоистый композит, состоящий из параллельно уложенных армирующих листов и растяжимой матрицы, под действием растягивающегося напряжения в плоскости. Поскольку по своей природе разрушение армирующих элементов контролируется в основном величиной напряжения, то мы предположим, что процесс разрушения композита будет состоять из последовательности разрушений элементов, как показано на рис. 4. Ясно, что, как только появится трещина, возникнет концентрация деформаций в точках А ж А. Если матрица является упругой с низким модулем или пластичной с заданным пределом текучести, то в двух элементах непосредственно перед кончиком трещины возникнет концентрация напряжений и наиболее вероятно, что разрушение этих элементов произойдет в точках Я и Я, а не в каком-либо другом месте. Элементы, соседние к этим двум, также находятся в условиях перенапряжения, но в меньшей степени. Нас  [c.181]


При такой идеализации, когда слоистый композит представлен в виде ряда из п звеньев цепи, разрушение цепи произойдет, когда по крайней мере одно звено разрушится. Если F (а) есть вероятность того, что звено или полоса длины б разрушится.  [c.185]

ЦИКЛОВ С использованием соответственно пересчитанных механических характеристик материала. Предположим, что рассматриваемый слоистый композит содержит начальную поперечную сквозную трещину длиной 2а. Тогда первые несколько циклов нагружения при заданных отношениях напряжений и амплитуды максимального напряжения не приведут к существенным изменениям напряженного состояния у кончика трещины. Последующее длительное воздействие циклической нагрузки вызовет изменения в матрице, волокнах и поверхности раздела. Этот процесс описывается уравнениями (2.6), (2.7). Наступает момент, когда характеристики жесткости и прочности композита изменяются настолько, что появляется возможность распространения трещины в наиравлении нагружения, как показано на рис. 2.27. Вначале рост трещины устойчив — это было показано ранее. Следовательно, геометрия образовавшейся трещины такова, что материал еще может безопасно подвергаться дальнейшему нагружению. При этом продолжается уменьшение модулей упругости и прочности, что, вероятно, вызывает ускорение роста трещины. В конечном итоге после многократного повторения циклов нагружения свойства материала ухудшаются настолько, что при амплитудном значении напряжения трещина прорастает катастрофически и наступает усталостное разрушение. Однако следует иметь в виду, что в результате действия механизмов, тормозящих разрушение, как в случае слоистого композита со схемой армирования [0°/90°] , усталостное испытание может закончиться разрушением образца вследствие падения его прочностных свойств. В процессе усталостного нагружения могут, кроме указанного, проявиться и другие механизмы разрушения, такие, как разрушение волокон в окрестности кончика трещины из-за высокой концентрации напряжений. За этим может последовать распространение поперечной трещины, как показано на рис. 2.31, или межслойное разрушение (расслоение) вблизи надреза (рис. 2.16), или вдоль свободных кромок образца (рис. 2.17). В любом из этих случаев развитие процесса разрушения поддается предсказанию. Получив количественную оценку протяженности области разрушения (определяемой как а или а), можно установить соотношения da/dN или da/dN и сравнить их с экспериментальными данными.  [c.90]


Протяженность области концентрации напряжений dg или пластической зоны dp в слоистых композитах с упругими или пластичными матрицами определяет область влияния неоднородности напряженного состояния, вызванной разрушением одного или более находящихся рядом армирующих элементов. Как только произойдет разрушение с образованием трещины, как показано на рис. 4 и 5, напряжения в двух элементах с каждой стороны ее на длине б = 2й возрастут по сравнению с номинальным напряжением всюду вне этой области. Наиболее вероятно, что дальнейшие процессы разрушения будут локализованы в этой полосе длины б и сопровождаться развитием существующей зародьнпевой трещины. Следовательно, как отметили впервые Гюсер и Гурланд [12] и широко использовал Розен с соавт. [30], нагруженный слоистый композит полной длины L можно рассматривать как ряд из п = = ЫЬ статистически независимых соединенных звеньев, как показано на рис. 6, в каждом из которых может независимо происходить зарождение разрушения и процесс его развития.  [c.185]


Разрушение и усталость Том 5 (1978) -- [ c.195 ]



ПОИСК



Вероятности. Стр Вероятность

Вероятность

Вероятность разрушения

Композит

Разрушение композитов

Слоистые композиты



© 2025 Mash-xxl.info Реклама на сайте