Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плотность кристаллическая хвосты

Приведенные данные показывают, что электрические и оптические свойства аморфных полупроводников похожи на свойства кристаллических полупроводников, но не тождественны им. Это сходство, как показал специальный анализ, обусловлено тем, что энергетический спектр электронов и плотность состояний для ковалентных веществ, которым относятся полупроводники, определяются в значительной мере ближним порядком в расположении атомов, поскольку ковалентные связи короткодействующие. Поэтому кривые N (е) для кристаллических и аморфных веществ во многом схожи, хотя и не идентичны. Для обоих типов веществ обнаружены энергетические зоны валентная, запрещенная и проводимости. Близкими оказались и общие формы распределения состояний в валентных зонах и зонах проводимости. В то же время структура состояний в запрещенной зоне в некристаллических полупроводниках оказалась отличной от кристаллических. Вместо четко очерченной запрещенной зоны идеальных кристаллических полупроводников запрещенная зона аморфных полупроводников содержит обусловленные топологическим беспорядком локализованные состояния, формирующие хвосты плотности состояний выше и ниже обычных зон. Широко использующиеся модели кривых показаны на рис. 12.7 [68]. На рисунке 12.7, а показана кривая по модели (Мотта и Дэвиса, согласно которой хвосты локализованных состояний распространяются в запрещенную зону на несколько десятых эВ. Поэтому в этой модели кроме краев зон проводимости (бс) и валентной (ev) вводятся границы областей локализованных состояний (соответственно гл и ев). Помимо этого авторы модели предположили, что вблизи середины запрещенной зоны за счет дефектов в случайной сетке связей (вакансии, незанятые связи и т. п.) возникает дополнительная зона энергетических уровней. Расщепление этой зоны на донорную и акцепторную части (см. рис. 12.7, б) приводит к закреплению уровня Ферми (здесь донорная часть обусловлена лишними незанятыми связями, акцепторная — недостающими по аналогии с кристаллическими полупроводниками). Наконец, в последнее время было показано, что за счет некоторых дефектов могут существовать и отщепленные от зон локализованные состояния (см. рис. 12.7, в). Приведенный вид кривой Л (е) позволяет объяснить многие физические свойства. Так, например, в низкотемпературном пределе проводимость должна отсутствовать. При очень низких температурах проводимость может осуществляться туннелированием (с термической активацией) между состояниями на уровне Ферми, и проводимость будет описываться формулой (12.4). При более высоких температурах носители заряда будут возбуждаться в локализованные состояния в хвостах. При этом перенос заряда  [c.285]


Если сравнить распределение плотности состояний по энергиям в кристаллических и некристаллических полупроводниках, то основным их отличием является присутствие в запрещенной зоне некристаллических полупроводников значительного количества разрешенных состояний (рис. 4, г). Таким образом, запрещенная зона некристаллических полупроводников не является запрещенной в полном смысле. Вследствие отсутствия дальнего порядка в диапазон энергий, соответствующий запрещенной зоне, из валентной зоны и зоны проводимости сдвигается часть разрешенных энергетических уровней, так называемые хвосты валентной зоны и зоны проводимости (заштрихованные области слева и справа).  [c.10]

При изучении кристаллических материалов довольно рана было установлено, что флуктуации потенциала, вызываемые примесями в полупроводнике, приводят к образованию хвостов плотности состояний у краев зон. Это вполне очевидно, если рассмотреть частицу в ящике в качестве модели электронных состояний вблизи дна зоны, как это показано на риЬ. 5.7, и ввести флуктуации потенциала. Такая задача рассматривалась во многих работах в связи с проблемой примесных зон в сильно легированных полупроводниках. Развитая теория, по-видимому, в значительной мере применима и для аморфных материалов ввиду рассмотренных в предыдущем параграфе указаний на то, что отсутствие дальнего порядка само по себе не меняет края зон по сравнению с их видом в кристалле. Часто. используется теория хвостов плотности состояний, предложенная Г альпериным и Лэксом [121, 122]. Для плотности состояний в области низкоэнергетического хвоста они получили зависимость вида ехр[— ], где п может изменяться с в интервале от V2 ДО 2.  [c.94]

Суммарная кристаллическая плотность будет, конечно, представлять собо1"1 сумму одноузельных плотностей, поскольку фриделевские хвосты плотности каждого нсевдоатома перекрываются  [c.103]

Кристаллическое распределение электронной плотности р(г) состоит из двух вкладов атомного р"(г) (распределение электронов в изолированном атоме) и экранирующего Ар(г), собранного из хвостов плотностей соседних атомов. Обычно для построения кристаллической плотности используются самосогласованные атомные волновые функции. Это значит, что атомный вклад в плотность, р (г), рассчитан с использованием всех порядков теории возмущений (ср. 6, 8), а не только первого, как в теорип диэлектрического экранирования. Мы имеем в виду не остовные электроны, а ту часть плотности валентных электронов, которая находится внутри сферы Вигнера — Зейтца.  [c.126]



Модели беспорядка Теоретическая физика однородно-неупорядоченных систем (1982) -- [ c.571 , c.576 ]



ПОИСК



Кристаллические

Плотность кристаллическая

Хвосты зон



© 2025 Mash-xxl.info Реклама на сайте