Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гидролиз аппрета в адгезионном

Г. Механизм гидролиза аппрета в адгезионном соединении Д. Химическая связь между аппретом и смолой..................  [c.119]

Г, Механизм гидролиза аппрета в адгезионном соединении  [c.135]

Результаты исследований, приведенные на рис. 8 и 9, представляют интерес с точки зрения изучения механизма гидролиза аппрета на поверхности раздела адгезионного соединения. Анализируя соединения, содержащие монослой или долю димеров АПС на по-  [c.135]


Гидролиз аппрета в адгезионном соединении 135—137 — силоксановых связей 196, 171— 175 Гидролитическое разрушение адгезионного соединения 132—137  [c.292]

После получения предварительных результатов Шрейдер и Блок DIO] исследовали всю поверхность, покрытую аппретом, используя радиоактивный АПС, что позволило непосредственно определить количество АПС на блоках до их склеивания. Установлено, что долговечность адгезионных соединений не зависит от присутствия в неоднородной пленке аппрета фракции 1 (физически адсорбированного продукта гидролиза, удаляемого холодной водой). Слишком большой избыток этой фракции иногда вызывает ослабление адгезионной связи. Максимальная долговечность соединений наблюдается в присутствии наибольшего количества фракций 2 и 3 (хемосорбированного полимерного АПС). При извлечении фракции 2 из пленки аппрета путем экстрагирования кипящей водой до склеивания блоков долговечность адгезионного соединения уменьшается по линейному закону (рис. 8).  [c.131]

После разрушения адгезионного соединения на стекле, обработанном адсорбционным методом, смолой удерживалась только Vio часть первоначально нанесенного количества АПС. Поскольку половина аппрета остается на стекле, можно предположить, что в среднем в слое аппрета около 0,2 молекул димера, адсорбированных стеклом, также химически связаны со смолой. Эта связь гидролизуется (при расщеплении молекул димеров посредине) с той же скоростью, что и связь димеров со стеклом. Поэтому после разрушения адгезионного соединения все (или почти все) димеры, связанные или несвязанные, оказываются расщепленными. Стекло остается наполовину радиоактивным, так как из каждого димера в результате гидролиза образуется мономер 0,2 общего количества димеров дают мономеры, присоединяющиеся к смоле, что соответствует 0, l первоначальной радиоактивности, а остальные димеры в количестве 0,4 переходят в раствор. Участие в химическом взаимодействии со смолой только 0,2 димеров указывает на то, что лищь отдельные группы эпоксидной смолы реагируют с аминогруппой аппрета.  [c.135]

После насыщения поверхности раздела водяными парами на ней возможно образование активных центров. При этом неупорядоченный гидролиз силоксановой связи (вероятно, той, что ближе к стеклянной поверхности) приводит к появлению двух еиланоль-ных групп, способствующих адсорбции гидрофильных соединений и, возможно, молекул воды. Участки поверхности, соприкасающиеся с этими группами, гидролизуются, т. е. гидролиз протекает в местах образования активных центров. Гидролиз димерного слоя аппрета АПС (рис. 9) возможен только в плоскости средней точки димеров. При максимальной толщине покрытия (рис. 8), представляющего собой мультислой АПС довольно большой толщины, эта плоскость может произвольно перемещаться зигзагами в вертикальном (перпендикулярно поверхности) направлении на участке, содержащем максимальное количество связей в этом случае долговечность адгезионного соединения будет такой же, как и на рис. 9.  [c.137]


Данные, полученные при радиоизотопном исследовании расщепленных адгезионных соединений пирекс — АПС — эпоксидная смола, свидетельствуют о том, что разрушение их вызывается гидролизом силоксановых связей в структуре аппрета. Такой механизм разрушения адгезионного соединения возможен для всех стеклопластиков (из алюмоборосиликатных стекол) при использовании силановых покрытий.  [c.138]

Прочность адгезионной связи между волокнами и матрицей оказывает решающее влияние на прочность композиций с короткими волокнами. Необходимо добиваться максимальной сдвиговой прочности по границе раздела волокно — полимер. В промышленности стеклопластиков успешно применяются аппреты, способствующие повышению адгезионной прочности стеклянных волокон к полиэфирным и эпоксидным смолам. Физико-химические процессы, протекающие при аппретировании стеклянных волокон, изучены достаточно хорошо [63]. В качестве аппретов обычно используют кремнийорганические соединения, в которых органический радикал совместим с полимерной матрицей. При гидролизе одной или нескольких связей =Si—OR в молекуле аппрете образуются силанольные группы =Si—ОН, способные реагировать с аналогичными группами гидрофильной поверхности стеклянных волокон. Теоретически мел<ду стеклом и полимерной матрицей образуются ковалентные связи. Важнейшей особенностью стеклопластиков с обработанными аппретами стеклянными волокнами является значительно меньшая потеря ими прочности и жесткости при выдержке во влажной среде. Аппреты повышают прочность при изгибе и сдвиге однонаправленных стеклопластиков, однако они оказывают значительно меньший эффект на прочность при растяжении. В полимерных композициях с короткими волокнами использование аппретов целесообразно, если они обеспечивают заметное улучшение их свойств. В полиэфирных и эпоксидных стеклопластиках адгезионная прочность между стеклянным волокном и связующим достаточно высока и без использования аппретов вследствие хорошего смачивания волокон жидкими смолами, однако в термопластах, наполненных волокнами любых типов, значительно труднее добиться хорошего смачивания волокон полимерами и высокой адгезионной прочности между ними. Большое число исследований проведено по нахождению усло-, ВИЙ аппретирования стеклянных волокон, вводимых в термопла-  [c.97]


Поверхности раздела в полимерных композитах Том 6 (1978) -- [ c.0 ]



ПОИСК



Аппреты

Гидролиз

Гидролиз аппрета в адгезионном соединении



© 2025 Mash-xxl.info Реклама на сайте