Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Борна Кармана для линейной цепочки

Одновременно с появлением дебаевской теории Макс Борн и фон Карман (М. Вогл, Th. von Karman, 1912) предложили строить теорию твердого тела на основе непосредственного расчета дисперсионной зависимости частоты собственных колебаний от волнового вектора, и> = ш(к), и плотности числа собственных колебаний для упорядоченных пространственных структур из упруго связанных материальных точек. Уже на примере линейной цепочки упруго связанных масс (см. задачи 51 и 52) удалось выявить многие характерные Черты спектра собственных колебаний системы, прежде всего образование акустической ветви колебаний из смещений узлов, образование оптической ветви в многоатомной цепочке, структуры плотности числа собственных колебаний, ограниченной сверху и имеющей запрещенные зоны внутри, и т. д. К сожалению, полное аналитическое исследование аналогичной задачи для двух- и трехмерных решеток провести не удается. Приближенный расчет собственных частот трехмерной решетки достаточно сложен. Впервые такой расчет для простой кубической решетки был выполнен лишь в 1937 г., теперь же это делает ЭВМ для различных кристаллических структур.  [c.206]



Физика твердого тела Т.2 (0) -- [ c.59 ]



ПОИСК



Борн (Bom

Борная

Борнит 789, XII

Кармана

Линейная цепочка

Цепочка сил



© 2025 Mash-xxl.info Реклама на сайте