Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распределение Вигнера — Портера Дайсона

Размерность дробная Я-систем 257 Разрушение магнитных поверхностей 92—94 Распределение Вигнера — Портера — Дайсона 214 Растяжение при отображениях 48-  [c.271]

Статистическая теория распределения уровней была построена в работах Вигнера, Портера и Дайсона следующим образом. Подобно тому, как в статистической механике вводится определенная гипотеза о статистическом ансамбле состояний, в основу статистической теории энергетического спектра была положена следующая гипотеза распределение уровней энергии Е эквивалентно распределению собственных значений К ансамбля случайных матриц определенной симметрии. Будем называть это предположение гипотезой Х — Е эквивалентности (ком. 4). Более аккуратная ее формулировка выглядит так. Рассмотрим очень большую последовательность уровней. Выберем в ней область, содержащую также большое число (т 1) уровней. Теперь расположим на единичной окружности собственные значения, например, унитарной матрицы очень высокого порядка со случайными элементами. Выберем на окружности дугу, содержащую примерно т собственных значенпй. Тогда гипотеза Х — Е эквивалентности состоит в том, что распределения, полученные для подсистемы из т уровней и тп собственных значений, совпадают.  [c.214]


Гипотеза Х — Е эквивалентности не была очевидной, и основной аргумент в ее пользу был связан с тем, что распределение собственных значений ансамбля случайных матриц обладает свойством расталкивания, т. е. таким же свойством, каким должно обладать распределение уровней энергии. Однако основной вопрос о том, какие физпческпе причины приводят к случайному распределению уровней, оставался неясным. В теории Вигнера — Портера — Дайсона отсутствие информации об этих причинах компенсировалось введенпем некоторого расплывчатого понятия о существовании черного ящика взаимодействий . Аргумента-1ЩЯ к сложности системы также была неудовлетворительной, ибо само определение сложности происходило из наивного представления о системе с большим числом степеней свободы. Сейчас нам уже известно, что статистические свойства могут возникнуть даже в системе с двумя степенями свободы, в то время как в системе с большим числом степеней свободы они могут не обнаружиться, если не выполнен критерий стохастичности.  [c.215]

Несмотря на некоторое различие в выборе начальных распределений (гауссовская мера у Вигнера и Портера и мера на группе у Дайсона), конечный результат для функции распределения расстояний между уровнями Р Е АЕ) в обеих теориях одпн и тот же  [c.214]


Стохастичность динамических систем (1984) -- [ c.214 ]



ПОИСК



Портер



© 2025 Mash-xxl.info Реклама на сайте