Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прямоугольник — Площадь, момент инерции, момент сопротивления

Контроль — Средства 511 Прямоугольник — Площадь, момент инерции, момент сопротивления 125  [c.598]

Для расчета рабочих и направляющих лопаток на растяжение и изгиб необходимо определить геометрические характеристики сечений площади, моменты инерции и сопротивления, координаты центра тяжести. Аналитический расчет этих характеристик представляет значительные трудности ввиду сложной конфигурации лопаточных профилей, поэтому на практике используют приближенные методы определения геометрических характеристик сечений [104, 145, 159], Все они основаны на применении графоаналитического метода. Рассмотрим метод средних прямоугольников, который дает точность, удовлетворяющую требованиям расчетов лопаток, а также позволяет вести расчет на ЭЦВМ.  [c.53]


Анализируя причины расхождения, в результатах, полученных тремя указанными методами, можно установить следующее. При применении самого грубого метода предполагается, что движущий момент является постоянным и определяется по средней величине, момента сопротивления за период движения машинного агрегата. Таким образом, в этом случае величина момента инерции маховика не зависит от мощности двигателя и от вида его механической характеристики. Применяя второй метод, пользуются двумя точками механической характеристики двигателя и, следовательно, здесь величина мощности двигателя оказывает влияние на конечный результат. В третьем методе приближенная механическая характеристика определяется по трем точкам заданной действительной характеристики, а далее вычисление величины момента инерции махового колеса производится ло точной формуле. Наглядно сравнить результаты, полученные указанными тремя методами, можно по фиг. 57, на которой избыточная площадь в первом случае определяется как площадь прямоугольника (нижнее основание располагается на уровне 184,2 кГм), во втором случае —по площади трапеции с наклонной нижней стороной, и в третьем случае— по площади трапеции с одной криволинейной стороной.  [c.116]

Расхождение между теорией кручения Навье и опытом нагляднее всего можно показать на следующем примере. Пусть рейсшина и трость круглого сечения изготовлены из одинакового материала, причем поперечные сечения рейсшины и трости имеют одну и ту же площадь. Длина обоих тел пусть будет также одинакова. Всякий, кто из своего опыта знает упругие свойства рейсшины и трости, не будет сомневаться в том, что пара сил с одинаковым моментом закрутит рейсшину при прочих равных условиях на значительно больший угол, чем трость. По теории же Навье было бы наоборот, потому что по этой теории угол кручения при прочих одинаковых условиях обратно пропорционален полярному моменту инерции площади поперечного сечения стержня. Но из всех фигур одинаковой площади круг имеет минимальный полярный момент инерции, а полярный момент инерции прямоугольника будет тем больше, чем меньше отношение узкой стороны его к длинной. Следовательно, по этой теории жесткость в смысле сопротивления закручиванию у рейсшины значительно больше, чем у трости круглого сечения, что во всяком случае противоречит опыту.  [c.49]


Смотреть страницы где упоминается термин Прямоугольник — Площадь, момент инерции, момент сопротивления : [c.271]   
Справочник металлиста Том 1 (1957) -- [ c.125 ]



ПОИСК



Момент инерции

Момент прямоугольника

Моменты сопротивления при

ПРЯМОУГОЛЬНИК

Прямоугольник — Момент инерции

Прямоугольника момент инерци



© 2025 Mash-xxl.info Реклама на сайте