Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диаграмма состояний железо—титан марганец—бор

Учение об изменении внутреннего строения и физико-механических свойств сплавов в результате теплового воздействия, не исчезающих после прекращения этого воздействия, составляет теоретические основы термической обработки. Общее представление о превращениях, протекающих в железоуглеродистых сплавах в результате теплового воздействия, можно получить из диаграммы состояния железо — цементит и железо — углерод. Как в сталях, так и в чугунах всегда присутствуют кремний, марганец, фосфор, сера, а в легированных сплавах — никель, хром, молибден, медь, ванадий, титан и др. Легирующие элементы и примеси изменяют положение линий диаграммы, на которых отложены критические точки структурных превращений. Одни элементы снижают температуру превращений, а другие — повышают. Без учета влияния этих элементов невозможно правильно, пользуясь только лишь диаграммой, разработать режимы термической обработки.  [c.92]


В жаростойких сталях и сплавах хром содержится в количестве 5—35%. В соответствии с диаграммой состояния железо — хром жаростойкие стали мартен-ситного класса имеют 5—14% хрома, а ферритного — 14—30%. Однако в присутствии других легирующих компонентов указанные границы могут сдвигаться. Например, углерод, азот, марганец и никель расширяют область мартенситных сталей в сторону большего содержания хрома, а кремний, вольфрам, молибден, титан, ниобий и алюминий сужают ее, уменьшая верхний предел содержания хрома.  [c.22]

Хром применяется в жаростойких сплавах в количестве 2—35 /о- Из диаграммы состояния системы железо — хром ясно, что мартенситные стали содержат 2—14 /о Сг, а ферритные 14—35 /о Сг. Однако эти границы могут сдвигаться из-за присутствия других элементов. Например, элементы, способствую-ш,ие устойчивости аустенита (углерод, азот, марганец и никель), расширяют область мартенситных сталей в сторону большего содержания хрома, в то время как кремний, вольфрам, молибден, титан, ниобий и алюминий сужают ее, снижая верхний предел содержания хрома.  [c.669]

При дальнейшем медленном охлаждении непрерывные твердые растворы этих двойных систем в определенном интервале концентраций образуют химические соединения FeNi3 РеСо, РеСг и FeV. Марганец, вольфрам, молибден, титан, ниобий, алюминий и цирконий образуют с железом твердые растворы замещения ограниченной растворимости. Причем, если количество введенных элементов превышает их предел растворимости с железом, то легирующие элементы образуют с железом химические соединения. На рис. 22 показана диаграмма состояния Fe - W. Тип диаграммы характерен для систем Fe - А1 (рис. 23), Fe - Si, Fe - Mo, Fe - Ti, Fe - Та и Fe - Be.  [c.45]

В настоящее время серийно применяется довольно большое число титановых сплавов. Большой диапа.зон их структур и свойств обусловлен, в частности, полиморфизмом титана, хорошей растворимостью многих элементов (по крайпеп мере в одной из фаз), а также образованием химических соединений, обладающих переменной растворимостью в титане. В соответствии с приведенными выше диаграммами состояния все легирующие элементы по влиянию на полиморфизм титана можно разбить на три группы. Первая группа представлена а-стабилизаторами — элементами, повышающими стабильность а-фазы из металлов к числу а-стабилизаторов относится алюминий. Ко второй группе принадлежат -стабилизаторы — элементы, повышающие стабильность р-фазы эти элементы в свою очередь можно разбить на две подгруппы. В сплавах титана с элементами первой подгруппы при достаточно низкой тедшературе происходит эвтектоидный распад р-фазы к числу таких элементов относятся хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт. В сплавах титана с элементами второй подгруппы при достаточно высокой их концентрации Р-твердый растнор сохраняется до комнатной температуры, не претерпевая эвтектоидного распада. Такие элементы иногда называют изоморфными р-стабилизаторами. К ним пр1шадле-жат ванадий, молибден, ниобий, тантал. Третья группа прелстаклена нейтральными упрочнителями, т. е. легирующими элементами, мало  [c.402]


Углерод в чугунах может находиться в виде химического соединения — цементита (такие чугуны называют белыми) или в свободном состоянии в виде графита — частично или полностью (в этом случае чугуны называют серыми). Получение того или иного вида чугуна зависит в основном от его химического состава и скорости охлаждения. Такие элементы, как кремний, титан, никель, медь и алюминий, способствующие выделению графита, называют графитизирующими. При введении таких элементов, как марганец, молибден, сера, хром, ванадий, вольфрам, углерод входит в химическое соединение с железом, образуя цементит (Feg ). Эти элементы называют антиграфитизирующими, или тормозящими графитизацию. При одном и том же химическом составе структура чугуна может быть различной в зависимости от толщины отливки. Чтобы обеспечить необходимую структуру отливок разной толщины, надо знать их химический состав. Для определения химического состава отливок опытным путем строят структурные диаграммы. Например отливка имеет химический состав С + Si = 4 % (линия аа. на рис. 8.1). При таком составе в отливке толщиной до 10 мм получится белый чугун, толщиной до 20 мм — половинчатый, толщиной до 60 мм — серый перлитный и толщиной свыше 60 мм — серый ферритно-пер-литный. При толщине отливки свыше 120 мм и указанном химическом составе чугун будет серый ферритный.  [c.133]


Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.497 ]



ПОИСК



Диаграмма состояний железо—титан

Диаграмма состояний железо—титан железо—хром—марганец

Диаграмма состояний железо—титан марганец—азот

Диаграмма состояний железо—титан марганец—водород

Диаграмма состояний железо—титан марганец—углерод

Диаграмма состояний железо—титан титан—бор

Диаграмма состояния

Железо Диаграмм

Железо диаграммы состояния

Железо — марганец

Железо — титан

Марганец

Титан

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте