Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цикл пароэжекторной холодильной установки

Теоретический цикл пароэжекторной холодильной установки на Г—5-диаграмме изображается следующим образом (рис. 9.4,6). Линия 1—2 соответствует испарению хладоагента в испарителе, линия 3—4 — процессу адиабатного расширения рабочего пара в сопле эжектора. Параметры паровой смеси после смешения рабочего пара (точка 4) н пара холодильного агента (точка 2) определяются точкой 5, а линия 5—6 соответствует повышению давления смеси паров в диффузоре. Отвод теплоты и конденсация паровой смеси в конденсаторе изображены линией 6—7. Линия 7—1 соответствует дросселированию холодильного агента в редукционном вентиле. Для части конденсата хладоагента, поступившего в парогенератор, линии 7- 8 и 8—3 соответствуют нагреву жидкости до температуры кипения и превращения ее в пар.  [c.226]


Цикл пароэжекторной холодильной установки. В химической технологии часто используют охлажденную воду с температурой 276...283 К, которую можно получить либо в абсорбционной, либо в пароэжекторной холодильной установке. Эти установки позволяют сэкономить топливно-энергетические ресурсы, поскольку они могут использовать вторичные энергоресурсы (ВЭР). Пароэжекторная холодильная установка отличается от паровой холодильной установки тем, что в ней вместо компрессора применяется эжектор.  [c.104]

Следует помнить об условности изображения цикла пароэжекторной холодильной установки на Ts-диаграмме. Однако из нее нетрудно найти степень использования теплоты в пароэжекторной холодильной установке или так называемый тепловой коэффициент, а именно  [c.106]

С термодинамической точки зрения цикл пароэжекторной холодильной установки весьма несовершенен по сравнению с циклом парокомпрессионной установки, поскольку процесс смешения в эжекторе сопровождается значительными потерями работоспособности вследствие принципиально необратимого характера этого процесса. Тем не менее благодаря своей простоте (компактность, отсутствие движущихся частей ) и возможности использования душевого пара низких параметров пароэжекторные холодильные установки находят применение.  [c.445]

ЦИКЛ ПАРОЭЖЕКТОРНОЙ ХОЛОДИЛЬНОЙ УСТАНОВКИ  [c.250]

Рис. 1.91. Идеальный цикл пароэжекторной холодильной установки Рис. 1.91. <a href="/info/758761">Идеальный цикл</a> пароэжекторной холодильной установки
В испарителе 1 холодильный агент — влажный пар, получая теплоту охлаждаемых тел, при постоянном давлении испаряется и в виде сухого пара подается в камеру смешения эжектора, и цикл повторяется. В пароэжекторной холодильной установке энергия затрачивается не в форме механической работы, а в форме теплоты. Холодильный коэффициент пароэжекторной холодильной установки определяется уравнением  [c.333]

Рис. 1,81. Принципиальная схема пароэжекторной холодильной установки и графическое изображение ее цикла в координатах Т, s Рис. 1,81. <a href="/info/4763">Принципиальная схема</a> <a href="/info/30023">пароэжекторной холодильной установки</a> и <a href="/info/335264">графическое изображение</a> ее цикла в координатах Т, s

Отводимое при охлаждении тепло воспринимается холодильным агентом, температура которого должна быть еще более низкой. Холодильный агент совершает обратный круговой цикл, в результате которого за счет затраты работы (в компрессионных машинах) или тепла высокого потенциала (в пароэжекторных или абсорбционных холодильных установках) от охлаждаемого тела (источника с низкой температурой) отнимается тепло и передается окружающей среде—источнику с высокой температурой.  [c.150]

Этот коэффициент характеризует степень необратимости рабочего цикла холодильной установки и является мерой ее термодинамического совершенства. Из двух холодильных установок, работающих в одном и том же интервале температур, более совершенной является та, у которой коэффициент использования тепла больше. Преимуществом пароэжекторной установки является отсутствие громоздкого и дорогостоящего парового компрессора, а кроме того, возможность использования весьма низкого давления рг без значительного увеличения габаритов установки. Это дает возможность применения в качестве холодильного агента воды. В пароэжекторной установке, работающей на водяном паре, без особых затруднений удается достигнуть температуры 0°С, при которой давление рг составляет всего 0,006108 бар, а удельный объем сухого насыщенного пара равен 206,3 м 1кг. При таких параметрах ни турбокомпрессор, ни тем более поршневой компрессор использовать невозможно.  [c.252]

В пароэжекторных установках, как и в парокомпрессионных, цикл осуществляется с хладоагентом в виде влажного пара. Однако в рассматриваемом цикле для сжатия пара холодильного агента используют не ком-  [c.224]

Цикл пароэжекторной холодильной установки, так же как и цикл парокомпрессионной установки, осуществляется с хладоагентом в виде влажного пара. Основное отличие состоит в том, что если в цикле нарокомпрессиониой установки сжатие пара по выходе па охлаждаемого объема производится  [c.442]

На рис. 1.81 представлены схема пароэжекторной холодильной установки и ее цикл в координатах Т, s. Сухой насышенный пар массой д кг с параметрами pi и Ti поступает из парогенератора 4 в эжектор 2, где при истечении из сопла б его давление понижается до рг (процесс 1-2 на Ts-диаграмме). В камере смешения Ь он смешивается с 1 кг сухого насыщенного пара, поступающего из холодильника I (точка О) с параметрами рг и Гг, в результате чего получается смесь паров массой (1 д) кг с параметрами рг и (точка с). Далее из камеры смешения смесь поступает в диффузор а эжектора, где происходит повышение ее давления до рз (точка а, процесс с-а). Из эжектора смесь поступает в конденсатор 3, где происходит ее полная конденсация (процесс а-3). Одна часть конденсата массой g кг с помощью насоса 6 (процесс 3-d, работа насоса) поступает в парогенератор 4, другая часть конденсата массой 1 кг — в дроссель 5 в результате дросселирования (процесс J-5) получается влажный пар давлением рг и степенью сухости xs, который далее поступает в холодильник 1. Здесь в результате подвода теплоты пар при постоянном давлении подсушивается до состояния хо = 1 (процесс 5-0), после чего поступает в эжектор 2. В парогенераторе 4 подводится теплота qi, в результате чего д кг конденсата превращается в сухой насыщенный пар давленщя pi (процесс d-1).  [c.155]

Поскольку затраты механической энергии на перекачивание жидкой фазы в абсорбционных и пароэжекторных холодильных установках пренебрежимо малы, ими пренебрегают и эффективность установок оценивается коэффициентом теплоиспользования, представляющим собой отношение отбираемой от охлаждаемых предметов тепло-ты к теплоте, используемой для реализации циклов - = Я2/Чь Сопоставление коэффициента теплоиспользования е с холодильным коэффициентом достаточно сложно. Однако можно констатировать, что пароэжекторные и адсорбционньЕе холодильные установки дают возможность вместо дорогостоящей механической энергии использовать для получения холода относительно дешевую тепловую энергию теплоносителей с невысокими значениями температуры что делает их применение экономически оправданным.  [c.204]


Смотреть страницы где упоминается термин Цикл пароэжекторной холодильной установки : [c.321]    [c.13]    [c.445]   
Смотреть главы в:

Техническая термодинамика Изд.3  -> Цикл пароэжекторной холодильной установки

Основы технической термодинамики  -> Цикл пароэжекторной холодильной установки


Теплотехника (1986) -- [ c.104 ]



ПОИСК



Холодильная установка

Холодильная установка пароэжекторная

Холодильные установки — Циклы

Цикл пароструйных (пароэжекторных) холодильных установок

Циклы воздушных, пароэжекторных и абсорбционных холодильных установок

Циклы парокомпрессионной и пароэжекторной холодильных установок

Циклы установок

Циклы холодильные



© 2025 Mash-xxl.info Реклама на сайте