Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследования течения материала В. В. Соколовским

Изложим решение двумерной задачи прессования полосы [48], основанное на проведенном В. В. Соколовским [121] исследовании течения материала в клиновидном сходящемся канале в предположении, что течение является радиальным. В основу решения положим модель нелинейно-вязкого тела, т. е. в уравнении состояния (2.100) примем mg = 0, = т, что справедливо при условии, что начальный участок кривой ползучести прямая линия. В. В. Соколовским [121] установлено, что в таком случае решение задачи сводится к численному решению системы обыкновенных нелинейных дифференциальных уравнений. Можно показать, что и в обш,ем случае уравнения состояния (2.100), когда mi О и /П2 =7 О, решение задачи также сводится к численному интегрированию системы обыкновенных нелинейных дифференциальных уравнений. Однако в этом общем случае система весьма громоздка. Поэтому ограничимся частным случаем = О, mi — т.  [c.138]


Рассмотрим решение двумерной задачи прессования круглого прутка в жесткой конической матрице, основанное на исследовании течения материала в коническом канале, проведенном В. В. Соколовским [121 ]. В этом решении предполагается, что течение является радиальным и используется модель нелинейно-вязкого т-ела. Уравнение состояния для этого случая следует из уравнения (2.100) при = О, tUi т. Тогда начальный участок кривой ползучести — прямая линия. Так же, как и для плоской задачи (см. 38), В. В. Соколовским показано, что и для осесимметричной задачи решение ее сводится к интегрированию  [c.150]


Смотреть страницы где упоминается термин Исследования течения материала В. В. Соколовским : [c.213]   
Ползучесть в обработке металлов (БР) (1986) -- [ c.138 , c.150 ]



ПОИСК



Соколовский

Течение материала



© 2025 Mash-xxl.info Реклама на сайте