Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиционные материалы для упаковки

При расчете упругих характеристик волокнистых композиционных материалов выделяется типичный объем. Он состоит из заданного числа волокон, распределенных в матрице (с указанием расстояний и угловых смещений) так, чтобы упаковка армирующих волокон по всему объему материала была идентичной их размещению в типичном объеме. Если определено напряженно-деформированное состояние во всех компонентах, входящих в типичный объем, то эффективными или приведенными упругими характеристиками композиционного материала являются коэффициенты, связывающие усредненные по типичному объему компоненты напряжений и деформаций. В матричной форме эта связь представляется в виде  [c.53]


НИИ координатных осей не учитывается. Допущение 3 соответствует идеальной предпосылке приближения Фойгта при расчете модуля упругости материала вдоль волокон. Согласно допущению 4 структурные параметры влияют на поперечную деформацию композиционного материала только через объемный коэффициент армирования, Упаковка волокон в поперечном сечении материала и изменение плотности по сечению при этом не учитываются. Допущение 5 исключает рассмотрение концентрации напряжений в компонентах на границе волокно— матрица при расчете констант. Именно последнее допущение позволяет получить достаточно простые расчетные выражения для упругих характеристик.  [c.58]

Геометрические параметры и объемный коэффициент армировании. Рассматривается композиционный материал 4D с плотной упаковкой прямолинейных волокон. Направления волокон параллельны направлениям высот тетраэдров, вершины которых совпадают с диаметральными вершинами куба (см. рис. 1.6). При такой схеме косоугольного пространственного армирования обеспечивается одинаковый угол между любой парой волокон из разных семейств. Этот угол в силу очевидного соотношения os 0 = 1/3 6 я 70° 30. Геометрическая задача для пространственно-армированного в четырех направлениях композиционного материала с плотной упаковкой волокон состоит в установлении схемы расположения волокон одного семейства и определении объемного коэффициента армирования.  [c.74]

Однако потери ингибитора через такие материалы настолько незначительны, что срок службы упаковки лимитируется не утечкой ингибитора, а влиянием агрессивных газов, диффундирующих внутрь упаковки к металлу, и долговечностью (атмосферостойко-стью) упаковочного материала. Использование материалов с высокими барьерными свойствами (комбинированные, армированные и композиционные) позволяют, кроме увеличения срока службы упаковки, снизить расход ингибитора, вносимого в упаковку для консервации металлоизделия, включая уменьшение его содержания в 1 м антикоррозионной бумаги.  [c.164]

Это же значение коэффициента армирования достигается при полной упаковке волокон с квадратными сечениями в случае трех ортогональных направлений армирования. Однако для сечений волокон в виде круга снижение коэффициента армирования у композиционного материала с плотной трехнаправленной структурой более значительно (р- = Зя/1б л 0,59), чем у материала с четырьмя направлениями армирования, рассмотренными выше (р = Зл/(8 /З) -0,68).  [c.77]


Вывод уравнения для расчета продольного модуля Юнга Еп, аналогичного уравнению, приведенному ранее в разделе 4.3.1, основывается на том же предположении, что волокна располагаются параллельно друг другу в матрице, но вводится коэффициент ненараллельности волокон, учитывающий отклонение от точной параллельности или прямолинейности волокон. Уравнения для расчета 22, V22 и G имеют более сложный характер и включают в себя коэффициент плотности упаковки, учитывающий, что при высокой степени наполнения однонаправленного композиционного материала многие волокна могут касаться друг друга, т. е. не быть разделенными матрицей.  [c.210]

В композиционных материалах, изготовленных на основе вискеризован-ных волокон с различной их ориентацией, структурные элементы (слои) выделяются плоскостями, проходящими параллельно плоскости укладки волокон, выбор плоскости деления материала на слои не зависит от характера расположения нитевидных кристаллов. Упаковка кристаллов отражается только на свойствах модифицированной матрицы, т. е. материалы с хаотической ориентацией нитевидных кристаллов перпендикулярно направлению армирующих волокон содержат слои с модифицированной транстропной матри-  [c.50]

Этот перечень материалов еще раз показывает, как трудио дать общее определение, которое охватывало бы все приведенные группы полимерных материалов, резко различающиеся между собой, особенно если учесть, что полимерная фаза в свою очередь может быть композиционной. Фактически ни один полимерный материал не является однофазным или однокомпонентным, хотя некоторые компоненты могут присутствовать в очень небольших количествах, резко изменяя физические свойства основного полимера. С позиций применения полимерных материалов для упаковки модифицирование их различными добавками является наиболее важным технологическим приемом расширения ассортимента материалов, поскольку это значительно легче и экономичнее, чем создание новых полимеров.  [c.454]

Пенопласты. Еще одним классом упаковочных полимерных композиционных материалов, который рассмотрен в этой главе, являются материалы с полимерной непрерывной и газообразной дисперсной фазами. Наибольшее распространение в процессах упаковки, обработки и хранения товаров и продуктов получили пенополисти-рол, пенополиолефины и пенополивинилхлорид. Следует при этом подчеркнуть, что использование пенопластов, помимо чисто технических преимуществ, существенно снижает стоимость материалов. Это обусловлено тем, что стоимость полимерных упаковочных материалов в решающей степени определяется стоимостью полимеров, а введение газообразной дисперсной фазы резко увеличивает объем материала на единицу массы. Достоинства пенопластов с точки зрения их физико-технических свойств обусловлены более высокой жесткостью листов или пленок пенопластов на единицу массы по сравнению с монолитным материалом. Так, уменьшение плотности материала за счет вспенивания в 2 раза должно приводить к удвоению его толщины и возрастанию жесткости в 8 раз при той же массе материала. Поскольку при этом модуль упругости материала уменьшается пропорционально плотности также вдвое, реально жесткость материала возрастает в 4 раза.  [c.461]


Смотреть страницы где упоминается термин Композиционные материалы для упаковки : [c.78]    [c.79]    [c.93]    [c.93]    [c.93]    [c.53]    [c.192]    [c.116]   
Промышленные полимерные композиционные материалы (1980) -- [ c.453 ]



ПОИСК



Композиционные материалы



© 2025 Mash-xxl.info Реклама на сайте