Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругое рассеяние нейтронов и их замедление в веществе

Упругое рассеяние нейтронов и их замедление в веществе  [c.258]

В первом приближении число таких дефектов, вызванных смещениями атомов в кристаллической решетке, пропорционально анергии, переданной веществу нейтронами при их замедлении. Действительно, при малых энергиях атомов отдачи их столкновения с другими атомами являются в основном упругими. Однако с ростом их энергии увеличивается вероятность неупругих столкновений, при которых энергия может передаваться в форме электронного возбуждения или ионизации. Таким образом, часть энергии расходуется не на повреждение кристаллической решетки. Кроме того, отклонение энергетической зависимости радиационной эффективности нейтронов от линейного закона обусловлено колебаниями энергетической зависимости сечений рассеяния, наличием анизотропии рассеяния и неупругого рассеяния нейтронов. Результирующая относительная энергетическая зависимость радиационной эффективности нейтронов 2д( ) в образовании элементарных дефектов для энергий Е> >0,1 Мэе приведена на рис. 9.19, кривая 1 (при нормировке  [c.70]


Относительная роль каждого процесса определяется величиной соответствующих сечений. В некоторых веществах, для которых роль упругого рассеяния относительно высока, быстрый нейтрон теряет свою энергию в серии последовательных актов упругого соударения с ядрами вещества (замедление нейтронов). Процесс замедления продолжается до тех пор, пока кинетическая энергия нейтрона не сравняется с энергией теплового движения атомов замедляющего вещества (замедлителя). Такие нейтроны называются тепловыми. Дальнейшие столкновения тепловых нейтронов с атомами замедлителя практически не изменяют энергии нейтронов и приводят только к перемещению их в веществе (диффузия тепловых нейтронов), которое продолжается до тех пор, пока нейтрон не поглотится ядром.  [c.240]

В прикладной ядерной физике и в ядерной технике приходится иметь дело с движением очень большого количества нейтронов внутри различных веществ. Проходя сквозь вещества, нейтроны вызывают в них различные ядерные реакции, а также претерпевают упругое рассеяние на ядрах. Интенсивностью этих микроскопических процессов в конечном счете определяются все макроскопические свойства прохождения нейтронов через вещество, такие, как замедление, диффузия, поглощение и т. д.  [c.531]

В отсутствие веществ с большим эффективным сечением не-упругого рассеяния или захвата, замедление быстрых нейтронов деления (> 1 MeV) происходит преимущественно путем упругих столкновений с окружающими ядрами. Имеет место ряд последовательных упругих столкновений, причем при каждом из столкновений с ядрами замедлителя нейтрон теряет долю своей энергии. На основании приведенного ниже уравнения (1.52) можно показать, что средняя остаточная энергия нейтронов после столкновения, например, с водородом (Н ) равна /е первоначальной энергии. Как будет показано ниже, относительная потеря энергии, приходящаяся на одно столкновение, быстро уменьшается с увеличением атомного веса. Отсюда следует, что тяжелые элементы не могут служить хорошими замедлителями в установках, работающих на медленных нейтронах.  [c.61]

Для гомогенной смеси веществ макроскопическое сечение определяют на основе закона аддитивности. При этом из-за больщой относительной величины потери энергии при упругом взаимодействии нейтронов с легкими ядрами в качестве сечения замедления можно принимать полное сечение рассеяния на водороде и половину полного сечения для других легких ядер. На средних и тяжелых ядрах замедление нейтронов происходит преимущественно вследствие неупругих взаимодействий, число которых достигает 50% общего числа взаимодействий. Суммарный эффект неупругих и упругих взаимодейст-вг й позволяет принимать в качестве эффективного сечения замедления на средних и тяжелых ядрах 3/4 полного сечения рассеяния нейтронов.  [c.300]


Особенно важна Р. з. в случае проникающего нейтронного излучения. Прохождение нейтронов через защитный слой анализируют в осн. методом моментов, лю-тодом Монте-Карло и численного интегрирования ур-ния Больцмана. Ослабление потока быстрых нейтронов в защитном слое происходит из-за упругого (особенно в водородсодержащих веществах Н2О, парафин, Полиэтилен, гидриды металлов, бетон) и неупругого рассеяния нейтронов. На достаточно больших расстояниях от плоского источника ослабление пучка с расстоянием происходит экспоненциально. Р. э. ядер-ного реактора отличается те.ч, что поглощение в защитном слое одного вида частиц, напр. тепловых нейтронов, как правило, сопровождается возникновением у-излучения (ядерная реакция (п, у)]. Так, при поглощении теплового нейтрона ядром водорода образуется фотон с энергией 2,2 МэВ, а в случае более эфф. поглотителя (напр., d) на один захваченный нейтрон приходится более 10 фотонов. Оптимальная Р. з. реактора содержит водородсодержащяе вещества или графит, замедляющие быстрые нейтроны до тепловых энергий (см. Замедление нейтронов), и ядра, захватывающие тепловые нейтроны (В, Сс1, Gtl). На АЭС обычно используют бетон с добавками металлич. скрапа и дроби, эффективно ослабляющий как нейтронное, так и у-излу-чение.  [c.201]

В Р.-р. отсутствуют вещества-замедлители нейтронов (упругое рассеяние), Однако нек-рое замедление нейтронов всё же происходит за счёт гл. обр. неупругого рассеяния. Поэтому энергётЯч. спектр нейт-  [c.298]

Из формулы (106) следует, что Пмакс = 0,5 при М==т, т. е. максимальная доля энергии теряется нейтроном при упругом рассеянии на протоне. Поэтому в качестве замедлителя везде, где это нужно, обычно используют водородсодержащие вещества. Однако ядра не только рассеивают, 1но и захватывают нейтроны в процессе замедления и это приходится учитывать при выборе вещества замедлителя.  [c.199]


Смотреть главы в:

Ядра, частицы, ядерные реакторы  -> Упругое рассеяние нейтронов и их замедление в веществе



ПОИСК



Замедление

Замедление нейтронов

Нейтрон

Рассеяние нейтронов

Рассеяние упругое

Упругое рассеяние нейтронов



© 2025 Mash-xxl.info Реклама на сайте