Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные принципы диаграммной техники

ОСНОВНЫЕ ПРИНЦИПЫ ДИАГРАММНОЙ ТЕХНИКИ 93  [c.93]

Основные принципы диаграммной техники  [c.93]

ОСНОВНЫЕ ПРИНЦИПЫ ДИАГРАММНОЙ ТЕХНИКИ 95  [c.95]

ОСНОВНЫЕ ПРИНЦИПЫ ДИАГРАММНОЙ ТЕХНИКИ 97  [c.97]

ОСНОВНЫЕ ПРИНЦИПЫ ДИАГРАММНОЙ ТЕХНИКИ 99  [c.99]

ОСНОВНЫЕ ПРИНЦИПЫ ДИАГРАММНОЙ ТЕХНИКИ 101  [c.101]

Каждый матричный элемент оператора % (т) строится, согласно (19.2.1), в виде матричного произведения операторов X , (или и С), располагаемых в определенном порядке. Операторы С ж диагональны, а оператор X, напротив, недиагонален он описывает переходы от одной корреляционной формы к другой в соответствии с определенными правилами отбора, обсуждавшимися в разд. 14.2 и 14.3, где исследовались возможные отдельные переходы. Здесь мы встречаемся с глобальной проблемой, которую можно сформулировать следующим образом. Чтобы построить матричные элементы (19.2.3), (19.2.4) в приближении пг-го порядка, согласно (19.2.1), мы должны совершить переход от s -Ь г)-частичного вакуумного состояния (справа) к некоррелированному — или к полностью коррелированному — s-частичному состоянию (слева) за т шагов, используя в качестве промежуточные состояний только коррелированные. В общем случае существует много различных путей перехода (когда он в принципе возможен) от начального в конечное состояние. Таким образом, мы сталкиваемся с топологической проблемой. Так же как и в равновесном случае (см. гл. 6), хотя и по другой причине, основная роль при анализе траекторий принадлежит типу их связности. Здесь также для исследовзния проблемы целесообразно воспользоваться диаграммной техникой, в основу которой положены диаграммы, введенные в разд. 14.2 и 14.3.  [c.259]


В этой формуле 5-й член есть сумма всех сильно связных 5-частичных диаграмм, имеющих одну свободную линию на левом конце. Вклад 5-го члена пропорционален поэтому формула (3.2.18) дает разложение интеграла столкновений по плотности. Интересно провести сравнение диаграммного представления интеграла столкновений с групповым разложением, рассмотренным в разделе 3.1.5. Основное различие между выражениями (3.1.73) - (3.1.75) и формулой (3.2.18) состоит в том, что метод групповых разложений приводит к марковскому интегралу столкновений в то время как в каждом члене диаграммного разложения (3.2.18) имеется запаздывание. Вообще говоря, диаграммное представление интеграла столкновений также можно свести к выражению, локальному во времени. Для этого диаграммная техника должна быть модифицирована таким образом, чтобы функции распределения fiit — т) выражались через функции fi t). Хотя эта версия диаграммной техники фактически эквивалентна групповым разложениям, она позволяет, в принципе, проводить частичное суммирование, что и является наиболее важным преимуществом диаграммных методов [72]. Следует, однако, отметить, что для кинетических уравнений с запаздыванием правила записи математических выражений, соответствующих диаграммам, и процедура суммирования значительно проще. В связи с этим в дальнейшем мы будем пользоваться диаграммным представлением интеграла столкновений в форме (3.2.18). Марковское приближение будет рассматриваться в каждом конкретном случае.  [c.192]


Смотреть главы в:

Методы КТП в физике твёрдого тела  -> Основные принципы диаграммной техники



ПОИСК



Основные принципы



© 2025 Mash-xxl.info Реклама на сайте