Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние на разрушение изменения свойств жидкости

Влияние на разрушение изменения свойств жидкости  [c.621]

Деформация — это предшествующая механическому разрушению реакция образца полимера на воздействие внешней силы. Несмотря на первоочередность деформационных процессов во времени, изучение влияния жидкостей на механические свойства полимеров исторически начиналось с выявления закономерностей, отражающих изменение прочности и долговечности. Единство процессов и закономерностей деформирования и разрушения полимеров не только в жидкой, но и в газовой среде весьма спорно, поэтому в последние годы началось интенсивное самостоятельное изучение деформации полимеров различных классов в жидкостях. Пристальное внимание исследователей к деформационным свойствам полимеров обусловлено широким использованием механической вытяжки при переработке полимеров и необходимостью обеспечения деформационной долговечности элементов различных конструкций из полимерных материалов, работающих в контакте с жидкими средами.  [c.162]


Пластмассы характеризуются сравнительно высокой химической стойкостью и широко используются как конструкционные материалы в различных агрессивных средах. Однако их механические свойства предел прочности, долговечность, пластичность, ползучесть — могут в значительной степени изменяться под влиянием среды. Кроме того, все полимерные материалы подвержены старению, вызванному деструкцией полимера, испарением пластификатора или другими процессами, приводящими к разрушению химических и физических связей в полимере. Воздействие химических веществ, тепла, влажности и механических напряжений усиливает процесс старения. Большинство пластмасс в большей или меньшей степени набухают в различных жидкостях. Набухание сопровождается изменением объема, механических, электрических, оптических свойств.  [c.92]

Металлы как кристаллические вещества при данных температуре и давлении характеризуются строго определенным пространственным расположением атомов, т. е. металл в твердом состоянии при данной температуре имеет энергетически устойчивое кристаллическое строение с минимумом свободной энергии, которой обладает атом или комбинация атомов. Нагрев или охлаждение вносят в состояние атомов энергетические изменения, а это может привести к перестройке в их взаимном расположении с минимумом свободной энергии. Следовательно, изменение температуры приводит к изменению свободной энергии. Однако до определенных температур нагрева металл остается кристаллическим телом. Повышение температуры приведет к дальнейшему изменению энергетического состояния атомов, близкому к энергетическому состоянию жидкости. При увеличении нагрева цельность металлической решетки нарушается, а в отдельных участках могут сохраняться отдельные группировки относительно закономерно построенных атомов. В силу энергетических условий они не могут быть устойчивыми, поэтому происходит их систематическое разрушение и образование. Эти группировки атомов в процессе кристаллизации становятся центрами кристаллизации. Чем меньше этих центров, тем из более крупных кристаллов будет состоять металл при переходе из жидкого состояния в твердое. Следовательно, условия плавления металла оказывают влияние на процесс кристаллизации и соответственно на свойства металла сварного шва. Однако из-за большого перегрева металла в сварочной ванне к моменту кристаллизации останется очень мало указанных центров кристаллизации или они вообще будут отсутствовать. Поэтому в сварочную ваину необходимо вводить искусственные центры кристаллизации, природа и количество которых зависят от условий сварки и используемых сварочных материалов, состава основного и присадочного металлов.  [c.5]


Наблюдаемое значительное отклонение экспериментальных результатов при О °С от прямолинейной зависимости в координатах Ig т — (1/Т) в настоящее время пока трудно объяснимо. Однако можно предположить, что ввиду достаточно сильного изменения таких свойств жидкостей, как вязкость и поверхностное натяжение при данной температуре, изменяется влияние жидкости на кинетику разрушения. Разрушающая активность жидкой среды по отношению к полимеру значительно уменьшается, и относительная роль термофлуктуационного механизма в процессе разрушения возрастает.  [c.149]

Влияние у-облучения на некоторые промышленные масла, смазочные материалы и консистентные смазки изучалось Керролом и Келишем [5]. Часть полученных ими данных приведена в табл. 3.4. Для большинства указанных жидкостей изменения спецификационных свойств при облучении являются типичными для масел на основе нефтей нафтенового основания, из которых они состоят. Однако в некоторых случаях замечается явное влияние содержащихся в них присадок на радиационную стойкость. Турбинное смазочное масло, содержащее антиоксидант, более устойчиво, чем масло без стабилизирующих присадок. Доказательством радиолитического разрушения присадок, повышающих индекс вязкости жидкости для автоматических трансмиссий, служит уменьшение вязкостей жидкости при умеренных дозах у-облучения. Важно то обстоятельство, что, хотя все масла потемнели, числа нейтрализации и коррозионная агрессивность по отношению к меди существенно не менялись, а противозадирные свойства смазок под действием 7-излучения неизменно улучшались (см. табл. 3.4).  [c.127]

По нашему мнению, разделение трения на сухое и граничное в большой мере условно, так как внешнее трение возможно только при наличии положительного градиента механических свойств по глубине, поэтому поверхностный слой должен быть отличен от нижележащих. Всякое внешнее трение является граничным, так как при нем деформации сосредоточены в тонком поверхностном слое. В противном случае, например при чистых металлических поверхностях, всегда возникает внутриметал-лическое трение (глубинное вырывание—5-й вид нарушения фрикционной связи). Для предотвращения этого необходимо, чтобы поверхности были разделены пленкой (оксидной, сульфидной и др.), которая должна предохранять нижележащие слои от разрушения. Однако силы молекулярного взаимодействия между этими пленками, тоже являющимися твердыми телами, все же достаточно велики, что приводит к высоким значениям коэффициента трения и соответственно к избыточному выделению тепла. Для понижения трения применяют жидкую смазку. При малой толщине слоя, смазка теряет свои объемные свойства, в частности теряет подвижность вследствие влияния молекулярного поля твердого тела. Жидкость, вступая в физическое и химическое взаимодействие с металлом, сильно деформированным при трении, резко меняет его свойства. Комплекс процессов, происходящих в тонких поверхностных слоях измененного материала и разделяющем их тонком слое жидкости, обусловливает явление граничного трения.  [c.237]


Смотреть страницы где упоминается термин Влияние на разрушение изменения свойств жидкости : [c.259]   
Смотреть главы в:

Кавитация  -> Влияние на разрушение изменения свойств жидкости



ПОИСК



141 — Влияние на свойства

Влияние Изменение

Жидкости, свойства) свойства)

Изменение свойств

Разрушение свойства

Свойства жидкостей



© 2025 Mash-xxl.info Реклама на сайте