Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация нормального граничного элемента оболочки

ДЕФОРМАЦИЯ НОРМАЛЬНОГО ГРАНИЧНОГО ЭЛЕМЕНТА ОБОЛОЧКИ  [c.57]

При рассмотрении деформации края оболочки удобно использовать систему координат, связанную (см. п. 5.2) с контуром области срединной поверхности. Сказанное ниже справедливо не только для граничного элемента оболочки, но и для любого нормального сечения. В принятой системе координат для вектора смещений имеет место представление  [c.288]


В течение многих лет после открытия этих уравнений прогресс в теории оболочек был крайне незначительным, и лишь более частная теория пластинок привлекала большое внимание. Пуассон и Коши оба занимались этой теорией, исходя из общих уравнений теории упругости и предполагая, что все величины, с которыми приходится иметь дело, могут быть разложены в ряды по степеням расстояния, ртсчитываемого от средней плоскости пластинки. Были получены уравнения равновесия и свободных колебаний для случая, когда Смещения перпендикулярны к пластинке. Большой спор возник по поводу граничных условий Пуассона. Эги условия состояли в том, что > силы и пары, приложенные по краю, должны быть равны силам и парам, происходящим от деформации. В своем знаменитом мемуаре ) Кирхгоф показал, что этих условий слишком много и что они, вообще, ие могут быть удовлетворены. Его метод основан на двух допущениях 1) что линей- t ные элементы, которые до деформации перпендикулярны к средней плоскости, остаются прямолинейными и нормальными к искривленной средней поверхности после деформации, 2) что элементы средней плоскости не подвергаются растяжению. Эти допущения дали ему возможность выразить потенциальную  [c.39]


Смотреть главы в:

Линейная теория тонких оболочек  -> Деформация нормального граничного элемента оболочки



ПОИСК



Деформация граничного элемента

Деформация нормальная

Деформация нормального граничного элемента

Деформация нормального элемента

Элемент граничный



© 2025 Mash-xxl.info Реклама на сайте