Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитогидродинамические преобразователи (МГД-преобразователи)

Применение покрытий в турбинах и в магнитогидродинамических преобразователях  [c.208]

Исследования магнитогидродинамических преобразователей с конусообразными сепараторами были проведены Д. Ж. Эллиотом [Л. 185]. Схема такого устройства и некоторые опытные данные об эффективности двухфазного сопла и сепаратора представлены на рис. 9-26. Опытные данные получены были на рабочей смеси азот — вода (ро= 10,2 бар р2= 1,02 бар и о = 21,б°С). Эффективность диффузора в зависимости от степени сухости двухфазной среды можно оценить по графику, представленному на рис. 9-27. С уменьшением степени сухости, как и следовало ожидать, к. п. д. диффузора возрастает.  [c.263]


МАГНИТОГИДРОДИНАМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ (МГД-ПРЕОБРАЗОВАТЕЛИ)  [c.524]

Топливные элементы. 19.2. Термоэлектрические генераторы. 19.3. Солнечные батареи. 19.4. Термоэмиссионные преобразователи. 19.5. Магнитогидродинамические генераторы.  [c.512]

Термоэлектрические генераторы, термоэмиссионные преобразователи, магнитогидродинамические генераторы и квантовые преобразователи представляют собой двухтемпературные установки, причем поддержание рабочей температуры осуществляется в ряде случаев посредством сжигания топлива. Наличие двух температурных уровней обусловливает циклический характер работы энергетической установки с подобным преобразователем и сближает такую установку с тепловым двигателем. Различие состоит лишь в том, что в рассматриваемом преобразователе нет движущихся узлов, как это имеет место в тепловом двигателе, т. е. преобразование энергии является без-машинным. С точки зрения технологии указанное отличие может оказаться важным, однако принципиального значения Б термодинамическом смысле оно не имеет.  [c.568]

Плазма — это уникальное рабочее тело качественно новой энергетической техники. Она может быть и низкотемпературной (до 10 К), и высокотемпературной (более 10 К). Низкотемпературная плазма используется в магнитогидродинамических (МГД) генераторах и термоэлектронных преобразователях (ТЭП), а высокотемпературная плазма -в термоядерных энергетических установках. Плазма применяется также в лазерах в качестве активной среды (например, в газоразрядных лазерах) или источника возбуждения лазерной активной среды (электронная накачка).  [c.280]

К ним относятся термоэлектрические установки и термоэлектронные преобразователи. Обычно к ним относятся также установки с магнитогидродинамическими генераторами, хотя, как будет показано ниже, это в известной степени условно.  [c.402]

Улучшение технико-экономических показателей тепловых и атомных энергетических установок ведется в двух направлениях — усовершенствование традиционных методов и разработка новых методов производства электроэнергии — так называемых методов прямого преобразования энергии (магнитогидродинамические генераторы, топливные элементы, термоэмиссионные преобразователи и т. п.).  [c.3]

Соответствующие устройства, в которых осуществляется превращение химической энергии в электрическую, называют термоэлектрическими генераторами, термоэмиссионными преобразователями, магнитогидродинамическими (МГД) ге-нераторами, электрохимическими генераторами (или топливными элементами).  [c.139]


Из пяти типов таких преобразователей (электрохимические генераторы, фотоэлектрические преобразователи, термоэлектрические генераторы, термоэмиссионные преобразователи, магнитогидродинамические генераторы) только первые два являются действительно прямыми преобразователями. В полезную внешнюю работу в электрохимических генераторах превращается внутренняя энергия рабочих тел, а в фотоэлектрических преобразователях — лучистая энергия, причем это превращение (рабочий процесс) протекает при постоянной температуре.  [c.170]

ПЛАЗМЕННЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, преобразователи тепловой энергии плазмы в электрич. энергию. Существуют два типа П. и. э. э.— магнитогидродинамический генератор и термоэлектронный преобразователь.  [c.540]

Тепловая машина, преобразующая тепло в механическую или непосредственно в электрическую энергию, обязательно включает в себя три составных звена источник тепловой энергии (реакция горения органического топлива, ядерный распад и т. д.), преобразователь (паровая машина, двигатель внутреннего сгорания, паровая или газовая турбина, термоэлектрические, магнитогидродинамические, термоэмиссионные преобразователи), и устройство для отвода неиспользованной тепло-, вой энергии. Как правило, эти звенья располагаются в непосредственной близости друг от друга в пределах одной энергоустановки или агрегата, и передача тепла  [c.3]

Развитие науки и тexFlики за последние два десятилетия характеризуется возросшим интересом к термодинамике и значительным расширением приложений ее к различным явлениям. В качестве примера можно указать на проблемы прямого, или безмашинного получения электрической энергии в топливных элементах, термоэлектрических генераторах, термоэмиссионных преобразователях, магнитогидродинамических генераторах. Существенно увеличился также перечень рабочих тел и областей их использования, а в изучении свойств веществ были получены новые важные результаты. Все это делает необходимым более глубокое изучение свойств веществ и систематизацию накопленных в этой области сведений.  [c.5]

Из шести типов прямых преобразователей энергии, в которых энергия тел преобразуется в энергию электрического тока (электрохимические генераторы, фотоэлек-1рические преобразователи, термоэмиссионные преобразователи, магнитогидродинамические генераторы, термоэлектрические преобразователи, квантовые преобразователи) только первые два являются в полной мере прямыми преобразователями. В полезную внешнюю работу в электрохимических генераторах превращается внутренняя энергия рабочих тел, а в фотоэлектрических преобразователях — лучистая энергия Солнца, причем это превращение (т. е. рабочий процесс) протекает при постоянной температуре.  [c.568]

Разнообразное использование Н. п. определяется простотой её создания. Газоразрядная плазма применяется в газовых лазерах и источниках связи, в плаа-мохим. процессах и процессах очистки газов, для обработки поверхностей, в разл. технол. и металлургич. процессах. Н. и. как рабочее тело используется при преобразовании тепловой энергии в электрическую, в магнитогидродинамических генераторах и термоамие-сионном преобразователе. В плазмотроне Н, и. выполняет роль теплоносителя. Вводимая в плазму электрич. энергия передаётся электронам, а от них — атомам или (и) молекулам газа и нагревает его. Уд. энергия, вводимая в такой газ, заметно выше энергии в пламени газовой горелки.  [c.354]

Низкотемпературная П. (Т 10 К) находит применение в газоразрядных источниках света и в газовых лазерах, в термозмиссионных преобразователях тепловой энергии в электрич. и в магнитогидродинамических генераторах, где струя П. тормозится в канале с поперечным магн. полем В, что приводит к появлению между верх, и ниж. электродами (рис. И) электрич. поля напряжённостью Е Вг/с (о — скорость потока  [c.600]


Менее распространены прямые преобразователи энергии, в рабочем процессе которых отсутствует стадия сгорания топлива в этих устройствах полезная внешняя работа в форме энергии электрического тока получается непосредственным превращением внутренней энергии тел или полей в электрическую энергию. В зависимости от характера рабочего процесса различают электрохимические преобразователи (генераторы), в которых электрическая энергия выделяется в результате токообразующих химических реакций между рабочими веществами солнечные батареи, превращающие лучистую энергию Солнца в электрическую энергию посредством фотоэлектрических эффектов магнитогидродинамические генераторы, в которых энтальпия сильно нагретого и поэтому ионизованного газа при течении в магнитном поле преобразуется в электрическую энергию.  [c.140]

Возможная схема плазменного преобразователя напряжения основана на последовательном включении низковольтного ТХД или СТД (КПД ускорения т у = 0,6. .. 0,7, параметр обмена Мо 20, отношение энергии ионов в вольтах к разрядному напряжению (ру = 10) и магнитогидродинамического генератора, у которого параметр обмена Мо < 1. В качестве магнитогидродинамического генератора можно использовать генератор типа Фарадея либо генератор холловского типа, работающий на слабоионизированной плазме и обеспечивающий максимальный коэффициент трансформащш напряжения  [c.168]


Смотреть страницы где упоминается термин Магнитогидродинамические преобразователи (МГД-преобразователи) : [c.525]    [c.527]   
Смотреть главы в:

Теоретические основы теплотехники Теплотехнический эксперимент Книга2  -> Магнитогидродинамические преобразователи (МГД-преобразователи)



ПОИСК



Применение покрытий в турбинах и в магнитогидродинамических. преобразователях



© 2025 Mash-xxl.info Реклама на сайте