Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критерии существования неподвижной точки многомерного точечного отображения

Критерии существования неподвижно точки многомерного точечного отображения. Уже на примере точечного отображения прямой в прямую можно было видеть, насколько сложным может быть поведение его последовательных преобразований. С увеличением размерности, естественно, трудности исследования и возможная сложность поведения значительно возрастают. Однако все же разница между одномерными отображениями и многомерными не столь разительна, как между двумерными и многомерными дифференциальными уравнениями. Некоторое объяснение этому можно видеть в том, что рассмотрение двумерной системы дифференциальных уравнений при сведении к точечному отображению прямой в прямую всегда приводит к взаимно однозначным отображениям, структура которых очень проста. В то время как исследование многомерных дифференциальных уравнений может свестись к изучению как многомерных точечных отображений, так и невзаимпо однозначных точечных отображений.  [c.297]


Один из важнейших вопросов, которые возникают при исследовании точечного отображения, — это вопрос о его неподвижных точках, их существовании, числе и устойчивости. Один из наиболее общих критериев существования неподвижной точки основывается на широко известной теореме Брауэра. Эта теорема утверждает, что любое непрерывное отображение Т, преобразующее многомерный шар или любую гомеоморфную шару область G в себя, имеет в G по крайней мере одну неподвижную точку х. Под гомеоморфностью области G шару имеется в виду, что она является некоторым взаимно однозначным и взаимно непрерывным отображением шара  [c.297]


Смотреть главы в:

Введение в теорию нелинейных колебаний  -> Критерии существования неподвижной точки многомерного точечного отображения



ПОИСК



Многомерность

Неподвижная точка

Неподвижная точка (точечного

Отображение

Отображение отображение

Существование

Точечное отображение — Неподвижная

Точечные отображения



© 2025 Mash-xxl.info Реклама на сайте