Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инвариантность фазового объема. Теорема Лиувилля

В приведённом выше определении ДС инвариантная мера играет не меньшую роль, чем сама группа преобразований замена меры может резко изменить свойства системы. Если задано лишь нек-рое семейство преобразований пространства X, то возникает вопрос о существовании хотя бы одной, прежде всего вероятностной, инвариантной меры. Иногда он решается относительно просто. Так, по теореме Крылова — Боголюбова всякое непрерывное преобразование компактного метрич. пространства обладает вероятностной инвариантной мерой, а по Лиувилля теореме мера Лебега (фазовый объём) инвариантна относительно любой гамильтоновой системы (хотя, в последнем случае мера всего пространства бесконечна, на гиперповерхности постоянной энергии может индуцироваться конечная мера). Иногда вероятностная инвариантная мера единственна. Это имеет место, напр., для каскада, порождённого поворотом окружности Г д =Рг(х- -сс), где а — иррациональное число, В др. случаях существует бесконечно много инвариантных вероятностных мер. Одна из пробле.м Э. т.— изучение инвариантных мер, принадлежащих како-.му-либо заранее выбранному классу. Пример такого класса— все инвариантные меры с фиксиров, совокупностью множеств меры О (такой же, как у заданной, не обязательно инвариантной меры) другой пример—инвариантные меры, удовлетворяющие вариационному принципу (см, ниже).  [c.626]



Смотреть страницы где упоминается термин Инвариантность фазового объема. Теорема Лиувилля : [c.598]    [c.529]   
Смотреть главы в:

Классическая механика  -> Инвариантность фазового объема. Теорема Лиувилля



ПОИСК



Инвариантность

Инвариантный тор

Лиувилль

Лиувилля

Объемы тел

Теорема Лиувилля



© 2025 Mash-xxl.info Реклама на сайте