Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

P решение линейных краевых задач, численное ортогональной прогонки

Численное решение линейной краевой задачи (7.1)-(7.3) получим с помощью метода ортогональной прогонки. Разобьем  [c.128]

Структура исходных уравнений нелинейной теории многослойных анизотропных оболочек довольно сложна, получить аналитическое решение уравнений (1.42), (1.43) непросто, позтому будем ориентироваться на их численное решение на ЭВМ, В последние годы самое широкое распространение и признание получила методика решения задач прочности оболочек вращения, согласно которой исходная система уравнений, описывающих напряженно-деформированное состояние конструкции в геометрически линейной постановке, сводилась к решению краевой задачи для нормальной системы обыкновенных дифференциальных уравнений. Этот прием в сочетании с методом ортогональной прогонки оказался настолько плодотворным, что проблема расчета осесимметричных оболочек вращения в классической постановке оказалась в основном завершенной [ 1.16].  [c.23]


Применение дискретно-континуальной расчетной схемы для тонкостенных оболочечных конструкций определяет основной метод решения задач статики и динамики тонкостенных осесимметричных и призматических конструкций. При численном решении краевых задач для систем линейных обыкновенных дифференциальных уравнений применяют метод ортогональной прогонки Годунова [6].  [c.143]

Деформированное состояние оболочки компенсатора определялось на основе метода [140] решения задачи о длительном циклическом нагружении данной конструкции. Задача решалась в ква-зистациоиарной несвязанной постановке путем численного интегрирования на ЭВМ Минск-32 системы нелинейных дифференциальных уравнений, определяющих напряженно-деформированное состояние неупругих осесимметрично нагруженных оболочек вращения. Решение линейной краевой задачи производилось на основе метода ортогональной прогонки [52]. Рассматривалась только физическая нелинейность. Учет геометрической нелинейности при расчетах сильфонов, работающих как компенсаторы тепловых расширений в отличие от сильфонов измерительных приборов [193], обычно не производится [32, 150, 222], как не дающий существенного уточнения при умеренных перемещениях. Предполагалось, что все гофры сильфона деформируются одинаково. Поэтому расчет производился только для одного полугофра. Эквивалентный размах осевого перемещения полугофра, вызывающий те же деформации, что и полное смещение концов сильфона, определялся по формуле  [c.200]

При решении контактной задачи в качестве исходного приближения выбирается решение линейной бесконтактной задачи. Эффективность подобного подхода при решении контактных задач нелинейной теории оболочек продемонстрирована в работах [121,127, 1291. Линейные краевые задачи решаются методом ортогональной прогонки С. К. Годунова. Коэффициенты матрицы [С] и вектора [D] (11.27) получаем численным интегрированием по формулам Ньютона — Котеса четвертого порядка. Уравнения (11.24) — (11.29), дополненные граничными условиями (П. 12) и условиями сопряжения (11.23), полностью определяют НДС осесимметрично нагруженной конструкции из оболочек вращения на п-т приближении итерационного процесса. Если необходимо получить ряд решений при пошаговом изменении нагрузки q, то начальное приближение для находим экстраполяцией по решениям для. ... .. Процесс последовательных приближений заканчивается, когда модуль максимального относительного расхождения компонент yt вектора решения Y для каждой точки ортогона-лизации меньше наперед заданного значения  [c.39]


Статика и динамика тонкостенных оболочечных конструкций (1975) -- [ c.69 ]



ПОИСК



I краевые

P решение линейных краевых задач, численное

Задача краевая

Задачи краевые - Решении

Краевой решение

Линейная задача

Линейные Краевые задачи

Ортогональность

Прогонки -

Решение линейной краевой задачи

Решение линейных задач на ЭВМ

Численное решение задачи

Численные решения



© 2025 Mash-xxl.info Реклама на сайте