Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрирование на потоках при помощи рядов

Особыми аналитическими приемами, позволившими найти разделение переменных для ряда задач динамики твердого тела, включая неголономные системы, в совершенстве владел С. А. Чаплыгин. Известные работы С. В. Ковалевской [86, 87] также до сих пор остаются образцом непревзойденного аналитического мастерства. В двадцатом столетии техника точного интегрирования нахождения разделяющих преобразований была частично утеряна, а ее место заняла общая процедура интегрирования с помощью методов обратной задачи рассеяния и нахождений представлений Лакса. В этом подходе считается, что задача является решенной, если предъявлено коммутационное представление Лакса (см. [31]) со спектральным параметром, позволяющим в принципе получить общее решение в тэта-функциях. С точки зрения алгебраической геометрии здесь идет речь о возможной линеаризации потока на многообразиях Прима (Якоби) и, исходя из анализа полюсных разложений дивизоров), делается вывод о возможности представления решения в функциях Римана, Бейкера - Ахиезера и пр.  [c.83]


В практике часто встречаются случаи, когда объектом расчета является сложное сочетание различных тел, например бетонное перекрытие с замурованными железными балками, изолированные трубопроводы с открытыми фланцами, барабаны паровых котлов и др. Расчет теплопроводности таких сложных объектов обычно производят раздельно по элементам, мысленно разрезая их плоскостями параллельно и перпендикулярно направлению теплового потока. Однако вследствие различия термических сопротивлений отдельных элементов, а также вследствие различия их формы в местах соединения элементов распределение температур может иметь очень сложный характер, и направление теплового потока может оказаться неожиданным. Поэтому указанный способ расчета объектов имеет лишь приближенный характер. Более точно расчеты сложных объектов можно провести лишь в том случае, если известно распределение изотерм и линий тока, которое можно определить опытным путем при помощи методов гидро- или электроаналогии. В ряде случаев достаточно точный расчет можно получить путем последовательного интегрирования дифференциального уравнения теплопроводности (см, 2-2 и 7-1) для различных элементов сложной конструкции. Однако для таких расчетов необходимо привлекать современную вычислительную технику и машинный счет. Наиболее надежные данные по теплопроводности сложных объектов можно получить только путем непосредственного опыта, который проводится или на самом объекте или на его уменьшенной модели.  [c.25]


Смотреть страницы где упоминается термин Интегрирование на потоках при помощи рядов : [c.27]    [c.288]   
Теория элементов пневмоники (1969) -- [ c.257 , c.379 , c.463 ]



ПОИСК



548 — Ряды

Интегрирование

Интегрирование на потоках



© 2025 Mash-xxl.info Реклама на сайте