Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент холостого хода паровых

На фиг. 92 показаны кривые ориентировочных значений коэффициентов холостого хода, определенных по тепловым характеристикам конденсационных турбогенераторов в зависимости от мощности последних. На фиг. 93 изображены ориентировочные кривые коэффициентов холостого хода X, определенных по паровым характеристикам соответственно конденсационных турбин и турбин с противодавлением, для  [c.118]


Зависимость расхода топлива ГТД от степени загрузки в пределах 35— 100% номинальной мощности довольно хорошо описывается прямыми линиями (рис. 6-12), как и в случае паровых турбин, только условный коэффициент холостого хода х у ГТД больше, чем у паровых турбин. Для  [c.108]

При расчете паровых турбин на режимах, отличающихся от номинальных, широко используются закон конуса Стодолы и метод расчета с конца (см. приложение III). Формула Стодолы обеспечивает достаточную точность при таких отклонениях от расчетного режима, когда изменения степени реактивности, коэффициентов расхода и потерь энергии невелики и ими можно пренебречь [53]. Однако формула Стодолы применяется и при больших отклонениях от номинального режима, вплоть до режимов холостого хода. Расчет ЦНД при малых расходах с использованием конуса Стодолы дает погрешность из-за существенного изменения условий работы не только последней, но и предыдущих ступеней ЦНД. Сравнение опытных значений давлений перед ЦНД [79] в диапазоне массовых расходов (0,023 -0,044) G om с расчетом по формуле Стодолы дает погрешность 10—15 % опытного значения давления. Такая погрешность является удовлетворительной для приближенной оценки работы всего ЦНД. При расчете же отдельных ступеней ЦНД, особенно последних, погрешность может значительно возрасти и выйти за допустимые пределы даже для оценочных расчетов.  [c.183]

Подготовка топлива к самовоспламенению протекает таким образом пары топлива проникают (диффундируют) в среду сжатого воздуха и образуют вокруг капли вначале трудновосг.ламеняющуюся (из-за недостатка кислорода) паровоздушную фазу. При дальнейшем испарении и распространении паров топлива в среде сжатого воздуха образуется легковоспламеняюш,аяся паровая фаза с. коэффициентом избытка воздуха а = 0,8 -н 0,9. В этой фазе зарождается пламя, которое способствует быстрому испарению топлива и распространению горения по всему объему цилиндра. Таким образом, есть время, которое необходимо для подготовки топлива к самовоспламенению. Это так называемый период задержки воспламенения топлива он может измеряться в градусах угла поворота коленчатого вала ф° или в секундах. Период запаздывания воспламенения обычно составляет 6—15° угла поворота коленчатого вала или 0,001—0,002 с. Когда капля топлива и воздух находятся в состоянии покоя в цилиндре, то проникновение воздуха через зоны 2 и 3 к воспламеняющейся капле затруднено. При относительном перемещении капли в воздухе доступ его к топливу облегчается, поэтому при завихрении воздуха в цилиндре Тг уменьшается. Период задержки воспламенения оказывает большое влияние на процесс горения в цилиндре дизеля чем больше Т , тем более жестко протекает работа дизеля. При больших значениях li происходит скопление топлива в цилиндре до его воспламенения, и процесс сгорания в дизеле становится мало управляемым, резко повышается давление сгорания и скорость нарастания давления в цилиндре. Особенно резко это проявляется при низких температурах окружающего воздуха когда могут наблюдаться даже пропуски вспышек на холостом ходу и малых нагрузках.  [c.65]



Теплотехнический справочник Том 1 (1957) -- [ c.0 ]



ПОИСК



Коэффициент холостого хода

Р холостого хода

РУД, холостой ход



© 2025 Mash-xxl.info Реклама на сайте