Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйнштейн в кубе

Рассеяние света в жидкостях. В 1910 г. А. Эйнштейн, исходя из идеи Смолуховского, дал количественную термодинамическую теорию рассеяния света в жидкости, учитывающую ее сжимаемость. Эйнштейн установил что интенсивность рассеянного света определяется кроме длины падающей световой волны абсолютной температурой и физическими постоянными среды — сжимаемостью, зависимостью оптической диэлектрической постоянной (обусловленной только световым полем, т. е. квадратом показателя преломления), от плотности. Эйнштейн, полагая, что рассеивающий объем и имеет форму куба, представляя флуктуацию оптической диэлектрической постоянной в виде  [c.318]


Формула (91) значительно лучше соответствует опытным данным при -низких температурах, чем формула Эйнштейна (86). Для. многих элементов и даже для некоторых простых соединений закон кубов выполняется количественно, что является значительным достижением теории Дебая. Так, Шредингер [37] приводит таблицы, показывающие, что при Т < теплоемкости А1,  [c.268]

Начала термодинамики занимают совершенно особое место среди всех законов природы,... нет такого процесса в природе, к которому этих начал нельзя было бы применять (Нернст) ... не существует. .. ни одной области физики, к которой термодинамика не имела бы отношения (Лауэ) ... второе начало царствует более чем над половиной физики (Лоренц) ... физики. .. мало-помалу дошли до понимания пределов применимости законов термодинамики и исследовали всевозможные области их применения тем самым было постигнуто глубочайшее значение. .. принципов термодинамики (Бриллюэн) Термодинамика и статистическая механика совершенно необходимы при изучении физических свойств вещества (Кубо) Теория производит тем большее впечатление, чем проще ее предпосылки, чем разнообразнее предметы, которые она связывает и чем шире область ее применения. Отсюда глубокое впечатление, которое произвела на меня классическая термодинамика. Это единственная теория общего содержания, относительно которой я убежден, что в рамках применимости ее основных понятий она никогда не будет опровергнута (Эйнштейн). В другом месте Эйнштейн отмечает, что термодинамика является ничем иным как систематическим ответом на вопрос какими должны быть законы природы, чтобы вечный двигатель оказался невозможным.  [c.3]

А. Эйнштейн положил в основу теории рассеяния света в жидкостях и газах именно мысль М. Смолуховского о рассеянии на флуктуациях показателя преломления среды. Идея подхода состоит в том, что среду можно разбить на объемчики малые по сравнению с кубом длины световой волны, в каждом из которых содержится много молекул. К этим объемчикам можно применять макроскопическ ое описание, используя понятие показателя преломления. Тогда флуктуации показателя преломления в этих объемчиках играют роль макроскопических неоднородностей, на которых происходит рассеяние света.  [c.143]

По мере поднятия над земной поверхностью содержание пыли и других посторонних частиц в воздухе уменьшается. Казалось бы, что при этом насыщенность рассеянного света синими лучами должна также уменьшаться. Однако наблюдения в высокогорных обсерваториях показали, что дело обстоит как раз наоборот. Чем чище воздух, чем меньше в нем содержится посторонних частиц, тем насыщеннее излучение неба синими лучами и тем полнее его поляризация. На этом основании Рэлей пришел к заключению, подтвержденному всеми последующими экспериментальными и теоретическими исследованиями, что здесь рассеяние вызывается не посторонними частицами, а самими молекулами воздуха. Такое рассеяние света называется рэлеевским или молекулярным рассеянием. Однако физическая природа молекулярного рассеяния была понята только в 1908 г. М. Смолуховским (1872—1917). Молекулярное рассеяние вызывается тепловыми флуктуациями показателя преломления, которые и делают среду оптически мутной. Теория рассеяния света в жидкостях и газах, построенная на этой основе, была создана в 1910 г. Эйнштейном. Она применима в тех случаях, когда длина световой волны настолько велика, что среду можно разбить на объемчики, малые по сравнению с кубом длины волны, каждый из которых содержит, однако, еще очень много молекул. К таким объемчикам еще можно применять макроскопические уравнения Максвелла, не учитывая явно молекулярную структуру  [c.602]



Смотреть страницы где упоминается термин Эйнштейн в кубе : [c.230]   
Единицы физических величин (1977) -- [ c.241 ]



ПОИСК



Кубит

Эйнштейн

Эйнштейний



© 2025 Mash-xxl.info Реклама на сайте