Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система замкнутая неинерциальная

Из формул (74), (75) и (78) следует, что законы сохранения, сформулированные в 2—4 этой главы, могут быть сформулированы и в неинерциальных системах отсчета, однако при иных условиях, чем это имело место в инерциальных системах. Так, например, в инерциальных системах закон сохранения количества движения или кинетического момента имел место в тех случаях, когда главный вектор или соответственно главный момент внешних сил был равен нулю, в частности, в замкнутой системе, на которую по определению не действуют внешние силы. Иначе обстоит дело в неинерциальных системах отсчета. Даже для замкнутой системы в неинерциальной системе отсчета, вообще говоря, не выполняются законы сохранения количества движения и кинетического момента. Для того чтобы количество движения и кинетический момент не изменялись в неинерциальных системах отсчета, нужно, чтобы были равны нулю главный вектор (или соответственно главный момент), составленный совместно для внешних сил и сил инерции. Ясно, что это может иметь место лишь при специальных условиях. Поэтому случаи, когда к не-инерциальным системам можно применять законы сохранения количества движения и кинетического момента, значительно более редки и носят частный характер.  [c.106]


Известно, что в ньютоновской механике закон сохранения импульса системы материальных точек справедлив для замкнутых систем. Выполняется ли указанный закон в неинерциальных системах отсчета  [c.201]

Таким образом, полученная теорема (46.8) утверждает, что изменение со временем вектора импульса механической системы, движущейся в неинерциальной системе отсчета К, обусловлено действием на нее как внешних сил, так и переносных и кориолисовых сил инерции. Из теоремы (46.8) вытекает важное следствие в неинерциальных системах отсчета не может существовать замкнутых систем материальных тел, так как для любой ограниченной системы частиц силы инерции выступают в роли внешних сил.  [c.260]

Полученная теорема об изменении вектора момента импульса еще раз подтверждает справедливость вывода о невозможности существования в неинерциальных системах отсчета замкнутых механических систем.  [c.261]

Из этого вытекает принципиально важное следствие. В неинерциальных системах отсчета не существует замкнутых систем тел. Силы инерции для всякой ограниченной системы тел являются внешними. Отсюда ясно, как обстоит дело с законами сохранения в неинерциальных системах отсчета. Второй закон Ньютона в них справедлив, и поэтому справедливы и асе вьпекающие из него следствия. Но все следствия, которые вытекают из применения второго закона Ньютона к замкнутым системам тел, не применимы в неинерциальных системах отсчета. Из второго закона Ньютона вытекает, что производная общего импульса системы тел равна сумме внешних сил, действующих на систему. Это остается справедливым и в иеинерци-альных системах отсчета, но в число внешних сил должны быть включены и силы инерции, действующие на все тела системы.  [c.379]

Для сил инерции нельзя указать тело, со стороны которого они приложены, и поэтому в отличие от обычных сил к ним неприменим третий закон динамики. Это приводит к тому, что в иеинерциаль-ных системах отсчета не существует замкнутых или изолированных систем тел, так как для любого из тел системы силы инерции являются внешними. Если относительно неинерциальной системы отсчета данное тело неподвижно, т. е. а = 0, то Р = 0 и согласно уравнению (22.1) имеем Рцн = —Р. Таким образом, измерение сил инерции можно свести к измерению сил, действующих на данное тело в инерциальной системе отсчета. Из уравнений/для Р и Рин получим  [c.83]


Смотреть страницы где упоминается термин Система замкнутая неинерциальная : [c.220]   
Физические основы механики (1971) -- [ c.336 , c.379 ]



ПОИСК



Система замкнутая

Ц замкнутый



© 2025 Mash-xxl.info Реклама на сайте