Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокна углеродные, адгезия к полимерной матрице

Настоящая книга является одним из 8 томов энциклопедического издания Композиционные материалы . В ней рассматриваются Практически все аспекты исследования внутренних поверхностей раздела в полимерных композитах, армированных традиционными стекловолокнами, а также борными и углеродными волокнами. Читатель найдет в книге описание современных методов исследования поверхностей раздела, анализ основных теорий аппретирования и адгезии полимерных матриц к упрочнителям. Впервые опубликованы сведения о химии поверхности высокомодульных и высокопрочных волокон бора и углерода и химии поверхности раздела в армированных ми композитах.  [c.4]


В настоящее время в качестве полимерной матрицы для изготовления углепластиков в основном используют термореактивные смолы (или реактопласты). Среди них следует прежде всего назвать эпоксидные смолы, обладающие хорошей адгезией к углеродным волокнам, высокими деформационно-прочностными характеристиками, теплостойкостью и другими ценными свойствами. Часто используют также ненасыщенные полиэфирные смолы, характеризующиеся хорошими технологическими свойствами и атмосферостойкостью (кроме того, они существенно дешевле эпоксидных смол). Для литьевого формования углепластиков начали применять термопластичные полимеры, которые имеют ряд преимуществ перед реактопластами с точки зрения технологии переработки, обладают большей ударной вязкостью и т.д. Определенный прогресс достигнут в разработке материалов на основе термопластичных полимеров и углеродных волокон в виде препрегов, листов для холодной штамповки и других полуфабрикатов.  [c.51]

К недостаткам углеродных волокон следует отнести их склонность к окислению на воздухе, химическую активность при взаимодействии с металлическими матрицами, слабую адгезию с полимерными матрицами. Улучшения совместимости волокон с металлическими матрицами и защищенности их от окисления добиваются нанесением на углеродные волокна металлических и керамических покрытий.  [c.268]

Углеродные волокна весьма хрупки и легко подвергаются повреждениям и разрушению при переработке. Чтобы предотвратить ухудшение свойств, вызванное этим явлением, осуществляют шлихтование нитей и жгутов, стремясь к образованию шлихтующего покрытия на элементарных волокнах (монофиламентах). При этом шлихтующий агент должен находиться в достаточно размягченном состоянии. Шлихтующие составы могут улучшать адгезию полимерной матрицы к углеродным волокнам,  [c.38]

Обработка поверхности волокон, используемых для армирования пластмасс. Чтобы армированные углеродными волокнами пластмассы, т. е. углепластики, обладали высокими механическими характеристиками, необходимо обеспечить прочность адгезионной связи между углеродными волокнами и полимерной матрицей, достаточную для передачи напряжения от волокна к волокну. Однако поверхность углеродных волокон, образовавшихся в процессе карбонизации или графити-зации, характеризуется слабой адгезией к ней полимерной матрицы. Следовательно, при использовании углеродных волокон для армирования пластмасс необходимо проводить обработку их поверхности с целью повышения адгезии. Обработка поверхности представляет собой обычно слабое окисление поверхности волокон, не снижающее их прочностных характеристик. Окисление осуществляют, например, в жидкости электролитическим методом [14]. 0  [c.37]


Адгезия на границе раздела углеродное волокно - полимерная матрица определяется следующими факторами 1) механическими связями вследствие проникновения полимера в шероховатости поверхности волокон 2) химическими связями между поверхностью углеродных волокон и полимерной матрицей 3) физическими связями (обусловленными силами Ван-дер-Ваальса). Основными являются фжторы 1 и 2. Образование химических связей в системе углеродное волокно — полимерная матрица определяется химически активными функциональными группами на поверхности углеродных волокон. Эти функциональные группы связываются с атомами углерода соседних ароматических фрагментов. По мере увеличения числа таких атомов углерода усиливается химическая связь между углеродным волокном и полимерной матрицей. В реальном случае при обработке поверхности возрастает число кислотных функциональных групп и соответственно повышается прочность углепластика при межслоевом сдвиге (рис. 2.7) [15]. При использовании высокомодульных углеродных волокон адгезия на границе раздела волокно — полимер определяется преимущественно механическими связями вследствие шероховатости поверхности углеродных волокон этого типа [16].  [c.37]

Предполагается, что пироуглерод-ное покрытие на углеродном волокне уменьшает адгезию между волокном и полимерным связующим и, следовательно, вероятность возникновения внутренних напряжений и дефектов в композите в процессе усадки связующего при карбонизации. Оптимальная толщина пироуглеродного покрытия на моноволокне 0,001—0,1 нм. Между соседними моноволокнами не должна образовываться сплошная матрица, которая могла бы препятствовать их подвижности при ( юрмо-образовании углепластика. Осаждение пироуглерода из метана предлагается проводить в изотермическом режиме при 1323 К остаточном давлении  [c.77]

Заметное повышение адгезии достигается при покрытии углеродных волокон пиролитическим углеродо.м [9-28], что объясняется более равномерным покрытием поверхности волокна полимерной матрицей. Покрытие углеродного волокна пиролитическим углеродом при 1300—1400°С повышает его прочность примерно на 30% без изменения модуля упругости.  [c.174]


Смотреть страницы где упоминается термин Волокна углеродные, адгезия к полимерной матрице : [c.185]   
Углеродные волокна (1987) -- [ c.37 ]



ПОИСК



Адгезивы

Адгезия

Волокна

Волокна полимерной матрицей

Волокна полимерные

Волокна углеродные



© 2025 Mash-xxl.info Реклама на сайте