Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Траектории точек тела при вращени плоском движении

Ю. Д. Соколов изучил также траектории общего соударения в обобщенной задаче трех тел. Ему принадлежит первое исследование трансцендентного уравнения Эйлера — Лагранжа, связывающего отношения взаимных расстояний с отношением масс в обобщенном случае. Он доказал, что при стремлении времени к моменту общего соударения три тела, вообще говоря, стремятся образовать предельную конфигурацию, соответствующую известным частным случаям Эйлера—Лагранжа, а также указал исключения из общего правила. Соколов исследовал пространственное симметрическое движение и, в частности, траектории общего соударения, с коллинеарной (на оси вращения) предельной конфигурацией. Он изучил также траектории обобщенной задачи трех тел в случае неограниченного расхождения точек системы для плоского и пространственного движения в течение конечного интервала времени.  [c.114]


Вращательным движением называется такое движение, при котором траектории всех точек тела являются концентрическими окружностями с центром на одной прямой, называемой осью вращения. Так, например, вал работающего мотора неподвижного автомобиля совершает вращательное движение. Неподвижная ось вращения проходит через неизменно связанные с телом точки, которые во время движения тела остаются в покое. Ось вращения может лежать вне тела или проходить сквозь тело. Вращательное движение вокруг неподвижной оси всегда будет плоским движением.  [c.177]

Покажем, что при движении плоской фигуры в ее плоскости подвижная центроида катится без скольжения по неподвижной центроиде. В самом деле, из теоремы Бернулли — Шаля следует, что перемещение плоской фигуры из одного положения (I) в другое (И) можно получить поворотом около центра конечного вращения. Действительное движение тела может при этом отличаться от чистого вращения, но начальное и конечное положения тела совпадают в обоих движениях. Заменим перемещение плоской фигуры из положения (I) в положение (И) достаточно большим числом п элементарных перемещений, причем в начале и конце каждого элементарного перемещения положение плоской фигуры совпадает с истинным ее положением в реальном движении. Увеличивая число п таких перемещений до бесконечности, сделаем каждое элементарное перемещение бесконечно малым и бесконечно малые дуги действительных траекторий точек плоской фигуры заменим бесконечно малыми дугами окружностей, общий центр которых находится в центре мгновенного вращения. Такая замена может быть выполнена с любой степенью точности, а следовательно, истинное движение плоской фигуры можно заменить системой последовательных бесконечно малых вращений около центров мгновенного вращения.  [c.118]


Смотреть страницы где упоминается термин Траектории точек тела при вращени плоском движении : [c.83]    [c.208]   
Курс теоретической механики 1981 (1981) -- [ c.64 ]



ПОИСК



Вращение точки

Движение без вращения

Движение плоское

Плоское движение тела

Плоское движение точки

ТРАЕКТОРИЯ ТЕЛА

Тело вращения

Точка — Движение

Траектории точек тела при вращени

Траектории точек тела при вращении

Траектории точек тела при вращении плоском движении

Траектории точек тела при вращении плоском движении

Траектория

Траектория движения

Траектория е-траектория

Траектория точки



© 2025 Mash-xxl.info Реклама на сайте