Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Формальное рассмотрение динамических систем

Формальное рассмотрение динамических систем  [c.70]

В заключение подчеркнем следующие два обстоятельства.. Во-первых, при выводе систем (1.3) и (1.4) условие конечномерности алгебры не накладывалось. Однако в отличие от конечномерного, в бесконечномерном случае интегрирование возникающих систем в конечном виде невозможно как будет показано в гл. V, решение задачи Гурса для них дается бесконечными формальными рядами, исследование сходимости которых, требует дополнительного рассмотрения с привлечением свойств алгебр типа конечности роста. Во-вторых, представление (1.1) применимо также и для суперсимметричных динамических систем, когда операторы вида (1.2) принимают значения в соответствующей супералгеб ре Ли = снабженной градуировкой (1.4.7). При этом в соответствии с (1.4.20) четным (нечетным) образующим подалгебры q( -) в скалярных произведениях сопоставляются функции z+, z с коммутирующими (антикоммутирующими) значениями. Как и в случае алгебр Ли системы уравнений, ассоциируемые с конечномерными супералгебрами Ли, интегрируемы в конечном виде, тогда как для бесконечномерных супералгебр Ли — в формальных рядах.  [c.117]


Вместе с тем, установленная Лагранжам взаимосвязь симметрия — сохранение не была им явно сформулирована в виде некоторого общего результата. Если Ньютон постулировал с самого начала определенные свойства пространства и времени, то Лагранж не высказывался непосредственно о тех принципах пространственно-временной симметрии, которые наряду с общей формулой динамики были им неявно положены в основу аналитической механики. С одной стороны, это было связано с общей тенденцией, характерной для механики XVIII и даже первой половины XIX в., избегать обсуждения аксиоматических основ механики с другой — с известной переоценкой динамических законов типа основных уравнений движения механики и недооценкой принципов пространственно-временной симметрии. Рассмотрение законов сохранения как первых интегралов уравнений движения механических систем могло поддерживать иллюзию, что взаимосвязь симметрия — сохранение имеет лишь формально-вычислительное значение и в своей общности и фундаментальности существенно уступает самим уравнениям движения или иной форме динамического закона (при этом не-оол редко упускалось из виду, что структура уравнений сама, в свою очередь, базировалась на определенных представлениях о свойствах симметрии пространства и времени).  [c.230]


Смотреть страницы где упоминается термин Формальное рассмотрение динамических систем : [c.6]    [c.236]   
Смотреть главы в:

Динамические системы  -> Формальное рассмотрение динамических систем



ПОИСК



Системы динамические



© 2025 Mash-xxl.info Реклама на сайте