Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приложение Н. Эффективный гамильтониан

Благодаря своей простоте квантовые решеточные системы оказываются ценными и в неравновесной статистической механике. Рассматривая предельно простой случай обобш,енной модели Изинга (в смысле, указанном в начале данного пункта), Радин [309] проанализировал поведение во времени величины R) для широкого класса начальных условий и локальных наблюдаемых. Можно показать, что в этом случае эволюция во времени не действует G-абелевым способом. Для физических приложений более важно другое обстоятельство оказывается возможным придать точную математическую форму традиционно принимаемому положению о том, что скорость приближения к равновесию в термодинамическом пределе должна быть связана со степенью непрерывности спектра эффективного гамильтониана. Подчеркнем, что здесь речь идет об эволюции во времени локальной наблюдаемой, погруженной в бесконечную систему, а поэтому гамильтониан, о котором мы говорим, совпадает с тем, который локально реализует эволюцию во времени бесконечной системы. Как оператор этот гамильтониан зависит от гильбертова пространства, на котором он действует в конструкции ГНС, и поэтому степень непрерывности его спектра зависит от представления. Коль скоро начальное состояние фо выбрано, степень непрерывности спектра гамильтониана можно связать с зависимостью функции е ( со — со )=бшш от пространственных переменных. Следует иметь в виду также, что метод Радина допускает обобш,ение на взаимодействия более широкого типа, чем описанная выше простая модель Изинга.  [c.388]



Смотреть главы в:

Квантовая оптика в фазовом пространстве  -> Приложение Н. Эффективный гамильтониан



ПОИСК



Гамильтониан

Гамильтониан эффективный



© 2025 Mash-xxl.info Реклама на сайте