Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технологические применения лазерного излучения при обработке металлов

Плавление металлов. Испарение металлов. Технологические применения лазерного излучения при обработке металлов. Окисление. четал-лической поверхности при облучении  [c.236]

Технологические применения лазерного излучения при обработке металлов. Как уже говорилось выше, для того чтобы процесс плавления — испарения металла можно было реализовать на большой глубине, необ.чоднмо использовать непрерывное лазерное излучение, а сам процесс должен посить стационарный характер. Рассмотри.м модель такого процесса, когда канал проникает в глубь металла па расстояние г, значительно превышающее радиус поперечного распределения излучения г,. г л,  [c.242]


Использование технологий модификации первого поколения [165, 166 , основанных на однократном или многократном однотипном внешнем воздействии потоками тепла, массы, ионов и т.д., не всегда обеспечивает требуемые показатели износостойкости материалов при высоких температурах, контактных давлениях и действии агрессивных сред. Поэтому расширение области применения и эффективности методов модификации металлов и сплавов для их использования в экстремальных условиях эксплуатации связано с созданием комбинированных и комплексных способов упрочнения, сочетающих достоинства различных технологических приемов. Существует несколько базовых способов унрочнения, эффективность которых в сочетании с другими методами подтверждена производственной практикой [165, 166]. К таким методам относятся ионно-плазменное напыление, электроэрозионное упрочнение, поверхностное пластическое деформирование, а также термическая обработка. Модификация структуры и свойств материалов при этом происходит за счет сочетания различных механизмов, отличающихся физико-химической природой. На этой основе разрабатываются H(3BE)ie варианты технологий второго поколения, вклю-чаюЕцие двойные, совмещенные и комбинированные нроцессы [166-169], в которых применяются потоки ионов, плазмы и лазерного излучения. К данному направлению относятся обработка нанесенных  [c.261]

Установки лазерного нагрева (см. рис. 3.4, г), несмотря на ограниченную мощность (до 50 кВт), нашли применение в некоторых технологических процессах. Лазерный нагрев характеризуется высокой плотностью мощности в зоне нагрева и применяется прежде всего для локального упрочнения деталей в местах повышенного износа и в труднодоступных полостях. В зависимости от плотности мощности лазерного излучения термическая обработка осуществляется как нагревом до температуры ниже температуры плавления, так и оплавлением поверхности изделия. При этом используются уровни плотности мощности лазерного юлучения Е = 10 - 10 Вт/м , что обеспечивает локальный нагрев металла до температуры плавления без заметного его испарения. Рекомендуется устанавливать плотность мощности для лазерной термообработки < Я, где = 10 - 5 Ю (Вт/м ) — пороговая плотность мощности излучения, выше которой происходит активное расплавление и испарение обрабатываемого материала. Важнейшими особенностями лазерной термообработки металлов являются возможность обработки деталей в любой атмосфере и отсутствие деформаций после термо-  [c.152]


Лазерное упрочнение на рациональных режимах повышает износостойкость и усталостную прочность, теплостойкость и жаропрочность, коррозионную стойкость. Однако ударная вязкость после лазерной обработки может снижаться. Недостатками лазерной обработки являются также высокая стоимость технологического оборудования, необходимость применения специальных покрытий для увеличения поглощающей способности обрабатьшаемых поверхностей, сложность оперативного контроля заданных свойств ПС, необходимость защиты персонала от рассеянного лазерного излучения. Большие скорости охлаждения могут вызывать временные термические напряжения растяжения, величина которых превышает предел прочности металла, в результате чего в ПС образуются закалочные трещины. При лазерной обработке чугуна с оплавлением в ПС образуются поры из-за выделения газов, адсорбированных на графитовых включениях. Указанные особенности необходимо учитывать при разработке технологических процессов изготовления деталей с использованием лазерной обработки.  [c.266]


Смотреть главы в:

Взаимодействие лазерного излучения с веществом Курс лекций  -> Технологические применения лазерного излучения при обработке металлов



ПОИСК



Излучение лазерное

Лазерное (-ая, -ый)

Металлов Применение



© 2025 Mash-xxl.info Реклама на сайте