Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения стержня в проекциях на связанные оси

В качестве второго примера рассмотрим стержень, показанный на рис. 4.2. Сте(ржень нагружен следящими силой Ро и моментом М.О. постоянны.ми во времени. Равновесная форма осевой линии стержня (например, прямолинейного до нагружения) есть пространственная кривая. На конце стержня имеется сосредоточенная масса т. Примем приближенно, что точка О (центр масс) совпадает с центром то рцового сечения стержня. Для следящих сил уравнения малых колебаний стержня в связанной системе координат будут однородными, так как проекции следящих сил и моментов в уравнения движения в связанной системе координат не входят. В данном примере имеем следующие краевые условия 1) е=-0, ио(0)=0,до(0)=0 2) в—1, АМ(1)- М =0, АО( 1) + Л = 0, где М , — соответственно момент инерции и сила инерции, дей-  [c.80]



Смотреть главы в:

Статистическая механика и теория надежности Изд2  -> Уравнения движения стержня в проекциях на связанные оси



ПОИСК



Движение стержня

Мод связанность

Проекции на осп

Р связанное

Уравнения движения стержня

Уравнения движения стержня движение

Уравнения связанных мод



© 2025 Mash-xxl.info Реклама на сайте