Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение амплитудное для волнового действия

Уравнение амплитудное 379 --для волнового действия 384, 386  [c.612]

Плоские рэлеевские моды, однако, ни при каких Рг не становятся наиболее опасными. В широкой области чисел Прандтля (Рг > 0,24) наиболее опасными среди всех рассмотренных типов возмущений являются монотонные спиральные возмущения. Спиральные моды, как и плоские волновые, имеют рэлеевскую природу. Критические числа Грасгофа четной и нечетной мод близки. При Рг < 2,7 более опасны возмущения четного типа, при Рг > 2,7 - нечетного. При больших Рг справедлива характерная для рэлеевского механизма асимптотика Gr = а/Рг для четной и нечетной мод соответственно а = 886 и 879. Заметим, что при Рг -> оо амплитудная задача (30.8) может быть упрощена. На границе устойчивости ( X = 0) из двух первых уравнений системы (30.8) следует 0, Uz Gr Тогда из третьего уравнения видно, что Gr 1/Рг, и последнее слагаемое в левой части этого уравнения мало. Система, таким образом, содержит в качестве параметра устойчивости число Рэлея Ra = Gr Рг, а стабилизирующее влияние основного течения на спиральную моду исчезает. Плоские волновые моды, как уже говорилось, также имеют рэлеевскую природу, однако, в отличие от спиральных мод, основной поток оказьюает на них стабилизирующее действие при всех Рг. С этой точки зрения понятно, почему спиральные возмущения оказьшаются более опасными. Анализу спектров декрементов посвящена работа [6].  [c.206]



Смотреть страницы где упоминается термин Уравнение амплитудное для волнового действия : [c.45]    [c.161]   
Линейные и нелинейные волны (0) -- [ c.384 , c.386 ]



ПОИСК



Волновое действие

Уравнение амплитудное

Уравнение волновое уравнение

Уравнения волновые

Шум амплитудный



© 2025 Mash-xxl.info Реклама на сайте