Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Адамара — Перрона возвращении

В этой главе мы осуществляем часть программы, сформулированной в 4 введения. Главный принцип нашего анализа состоит в использовании своего рода гиперболичности линеаризованной динамической системы вдоль определенных орбит. Мы покажем, что она порождает аналогичное поведение нелинейной системы вблизи некоторой заданной орбиты (теорема Адамара — Перрона 6.2.8). Комбинация локальной гиперболичности, возникаю-ш,ей в линеаризованной системе, с нетривиальным возвращением, явлением по существу нелинейным, приводит к изобилию периодических орбит (теорема Аносова о замыканни 6.4.15) и порождает богатую и устойчивую во многих отношениях структуру орбит, которая будет далее исследоваться в части 4.  [c.243]



Введение в современную теорию динамических систем Ч.1 (1999) -- [ c.156 ]



ПОИСК



Адамар

Адамара теорема

Возвращение

Перрон

Теорема Адамара — Перрона

Теорема Адамара — Перрона Пуанкаре о возвращении

Теорема о возвращении



© 2025 Mash-xxl.info Реклама на сайте