Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

33 — Уравнения основные сред упруго-вязких

В книге даны основы механики сплошной среды (МСС) физическая трактовка основных понятий и статистическое обоснование законов МСС аксиоматика МСС кинематика и теория внутренних напряжений в средах физические законы — сохранения массы, импульса, энергии и баланса энтропии методы получения замкнутых систем уравнений, основные типы граничных условий и постановки краевых задач МСС. Даны замкнутые системы уравнений для классических сред (газов, жидкостей, упругих тел) и для сред со сложными свойствами (вязко-упругих, нелинейно вязких, упруго- и вязко-пластических, плазмы и др.) при действии электромагнитного поля. Дана теория размерностей и подобия с ревизионным анализом уравнений МСС, критериями подобия и моделирования, с примерами автомодельных решений.  [c.3]


В настоящей главе кратко приводятся основные сведения определяющие соотношения и уравнения, описывающие динамику поведения сплошных сред на основе линейной теории вязкоупругости и термовязкоупругости, при этом главное внимание уделяется средам, проявляющим мгновенную упругость, т. е. средам, относящимся к твердым деформируемым телам, а не к вязким жидкостям.  [c.4]

Рассмотрим несколько типовых задач, к решению которых сводится исследование случайных колебаний нелинейных механических систем. В качестве основного методического примера здесь и в дальнейшем будем использовать одномассовую нелинейно-упругую систему, двигающуюся в вязкой среде. Пусть состояние (движение) системы описывается дифференциальным уравнением второго порядка -  [c.6]

Что же в итоге дала эпоха становления и утверждения классической механики, эпоха от Галилея до Ньютона, в учении о колебаниях и волнах Пользуясь современной нам терминологией, мы можем подытожить труды целого столетия следующим образом. Во-первых, была построена теория малых колебаний (около положения равновесия) системы с одной степенью свободы (маятник) как незатухающих, так и при наличии вязкого сопротивления. Теория была построена в геометрической форме, ее еще предстояло перевести на язык анализа и представить как результат интегрирования дифференциального уравнения. Во-вторых, была дана в основном оправдавшая себя схема распространения волн сжатия и разрежения в идеальной жидкости, выявлена зависимость скорости распространения этих волн от упругости (давления) и плотности среды. В-третьих, была дана (слишком) упрощенная физическая схема образования волн на поверхности тяжелой жидкости. В-четвертых, был найден плодотворный принцип для построения фронта распро-  [c.261]

Система уравнений, описывающая течение смазки в УГД контакте, выводится с учетом ряда допущений (их обсуждение см., например, в [5, 7, 32]) из уравнений гидродинамики, теплопереноса и теории упругости. Основные допущения заключаются в следующем толщина слоя смазки существенно меньше радиусов контактирующих тел, силы вязкого трения значительно больше инерционных, локально контактирующие тела заменяются полупространствами. Связь между тензором скоростей деформации и тензором напряжений, т.е. реологическая модель среды, является заданной. Зависимости свойств смазки — вязкости, плотности, теплопроводности, теплоемкости — от давления и температуры полагаются известными. Известными являются физические свойства твердых тел. При исследовании микро-УГД смазки задается топография поверхности. Система УГД уравнений замыкается начально-краевыми условиями.  [c.499]

Термопластическая сплошная среда с памятью. Существует широкий класс материалов, которые при деформации проявляют одновременно упругие, пластические и вязкие свойства, не имея при этом четко выраженного предела упругого деформирования. Вязкопластические свойства у таких материалов могут проявляться при малых напряжениях и сравнительно невысоких по сравнению с То уровнях температуры. Для описания их поведения к настоящему времени предложены различные математические модели с едиными определяющими уравнениями для процессов как нагружения, так и разгрузки. Подобный подход позволяет не рассматривать образование в деформируемом теле зон упругой и неупругой деформации. Модель сплошной среды с памятью и внутренними параметрами состояния относится именно к этой группе моделей. Основная идея, применяемая в данном случае, состоит во введении в рассмотрение приведенного времени, базируясь на различных исходных предпосылках.  [c.161]


Механические свойства жидкостей и твердых тел, не обладающих совершенной упругостью и вязкостью, настолько переплетаются, что для тех и других нередко используются одни и те же соотношения между напряжениями и деформациями, и в этих случаях основные дифференциальные уравнения МСС для них совпадают. Важный пример таких сред представляют полимерные материалы (смолы, каучук,. ..). Технология их производства охватывает область жидкого и твердого состояния, причем упругие и вязкие свойства являются существенными. Поведение металлов в технологических процессах и конструкциях в зависимости от диапазона температур определяется вязкими, вязкопластическими, упругопластическими или упругими свойствами.  [c.217]

Исследователи, изучающие движение сыпучей среды, из общих законов механики могут предсказать основные качественные черты движения. Поэтому к математическим способам описания неизвестных эмпирических зависимостей, в которых выбор вида аппроксимирующей функции осуществлен формальным образом, обычно не прибегают. Наиболее привычной формой описания движения являются дифференциальные уравнения. Достаточно просто решаются дифференциальные уравнения с постоянными коэффициентами. Поэтому сплошную среду описывают моделью, состоящей из системы твердых тел, связанных взаимно и с пове])Хностью лотка со стандартными элементами линейной упругости, линейной вязкости, сухого трения с постоянными коэффициентами и простейшими ударными элементами. Такие модели позволяют получить общее решение, поэтапно используя решения линейных систем. Число масс упругих, вязких, ударных элементов сухого грения определяет число посгоянных, подлежащих определению из эксперимента. С увеличением числа элементов возрастает точность описания экспериментальных результатов. Такие модели способны описывать с достаточной гочносгью все необходимые зависимости — = Кг (о), где вектор а — совокупность всех параметров, влияющих на /(, т. е пространство параметров, в котором ведется эксперимент. Решение дифференциальных уравнений движения дает теоретические значения К . Но эти значения зависят от численных значений параметров модели с . Их определяют, минимизируя квадратическую ошибку между экспери енгальными значениями (aj и теоретическими значениями подсчитанными при тех же комбинациях параметров а,-, при  [c.90]

Курс содержит четыре части, В первой из них, общей для всех частей, излагаются основные понятия кинематики и основные уравнения движения произвольной сплошной среды. Вторая часть посвящена из-ложению элементов некоторых разделов гидродинамики, уравнения движения идеальной и вязкой жидкости, аэродинамика, волновые движения у пограничный слой. Особое внимание в этом разделе уделено плоскопараллельным движениям и двумерным движениям вдоль криволинейных поверхностей. Теория фильтрации, которой посвящена третья часть у рассматривается с точки зрения применения методов гидродинамики к решению технических краевых задач. Последняя, четвертая, часть посвящена уравнениям теории упругости и применению их к некотх)рым конкретным задачам. Втюрая и третья части а также частично третья часть, независимы друг от друга и могут изучаться отдельно.  [c.2]

Первый шаг в создании гидродинамики вязкой жидкости был сделан Навье в мемуаре 1822 г. Навье развил молекулярный подход, аналогичный примененному им при выводе уравнений теории упругости, но осложненный учетом движения среды. В качестве основной гипотезы он (следуя, вообще говоря, Ньютону) принял пропорциональнссть дополнительной силы взаимодействия молекул (при их движении) скорости их сближения или расхождения. В результате сила взаимодействия молекул определяется по Навье формулой / (p)F, где / (р) — быстро убывающая с ростом р функция расстояния р между молекулами, а F — скорость их взаимного сближения. Используя, как и во второй половине мемуара о деформируемом твердом теле, принцип виртуальных перемещений и ограничившись рассмотрением несжимаемой жидкости, Навье получил уравнение движения во вполне современной форме  [c.66]

Как уже отмечалось, рассматриваемая модель разрушения— это двухфазная модель, которая имеет две последовательные фазы разрушения. Первая фаза разрушения состоит в том, что элемент сплошной среды переходит в некоторое промежуточное состояние (концевая зона), а затем, уже во второй фазе, трещина разрушения, попадая в концевую зону, производит его окончательное разрушение. На начальном этапе развития трещина двигалась по первоначально сформированной концевой зоне (предполагается, что к моменту =0 в теле уже существует трещина длиною U с концевой областью flfo)) и поэтому берега разреза в концевой зоне уже имели дополнительное раскрытие за время инкубационного периода (второе слагаемое в уравнении (9.2)). На втором, основном, этапе развития трещины такой ситуации уже нет. Трещина последовательно разрывает сплошной материал, формируя перед этим концевую область. Раскрытие берегов разреза в концевой области начинается с момента попадания вершины концевой области в соответствующую точку вязко-упругого тела. Обозначим этот момент t. Уравнение медленного роста трещины на этом этапе, как и в предыдущем случае, получим, полагая, что в любой момент развития трещины выполняется условие (9.1). В этом случае имеем  [c.83]


О ТОМ, что главные напряжения в каждой точке улругого тела пропорциональны соответственным главным удлинениям. Но наряду с упругим телом Коши рассматривал и неупругое тело и жидкость. В своей основной работе ), сообщение по которой было сделано ещё в 1822 г., в 3 Коши рассматривает движение внутри неупругой среды и вместо проекций смещений вводит проекции вектора скорости смещения и свою основную гипотезу формулирует так главные напряжения в каждой точке пропорциональны мгновенным главным удлинениям или сжатиям. На основании этой гипотезы Коши получает дифференциальные уравнения, отличающиеся от современных уравнений движения вязкой жидкости только отсутствием слагаемого с давлением. Затем он видоизменяет свою гипотезу, полагая напряжение состоящим из двух слагаемых, из которых первое считается пропорциональным мгновенным сжатиям или расширениям, а второе считается зависящим только от положения точки. Далее, второе слагаемое принимается пропорциональным скорости объёмного расширения. Вследствие этого получаются дифференциальные уравнения, сходные с уравненрмми движения вязкой сжимаемой жидкости. Таким образом, Кощи, создавая основные понятия теории упругости, вместе с этим установил и некоторые основные понятия теории движения вязкой жидкости.  [c.19]

Полное решение проблемы выбора надлежащей модели материала даже в такой упрощенной форме далеко от завершения, однако имеются примеры удачных частных решений. Так, при сверхвысоких (порядка модуля упругости) давлениях, развивающихся при гиперскоростных соударениях, успешно используется модель идеальной жидкости (М. А. Лаврентьев, 1949). Для материалов типа полимеров, для которых существенны эффекты несовершенной упругости, иногда используется модель вязкоупругого тела (см., например, А. Ю. Ишлинский, 1940). Что касается материалов типа металлов, находящихся под действием умеренно высоких напряжений порядка предела текучести (которым, в основном, и посвящен данный обзор), то для их изучения могут использоваться два подхода. В основе первого из них лежит допущение, что за пределами упругости материал переходит в вязко-пластическое состояние и его определяющее уравнение зависит от времени. Начало этому направлению подолбили работы А. А. Ильюшина (1940, 1941), в которых в качестве определяющих уравнений использованы уравнения вязко-пластического течения, не учитывающие упругих деформаций. В этих работах дано решение нескольких теоретических задач (удар по цилиндрическому образцу твердым телом, деформирование полого цилиндра под действием внутреннего давления) и описан сконструированный автором первый пневматический копер, позволявший достигать скоростей деформаций порядка 10 Исек (с помощью его были определены коэффициенты вязкости некоторых металлов). Сразу вслед за тем учениками А. А. Ильюшина были решены задачи о вращении цилиндра в вязко-пластической среде (П. М. Огибалов, 1941) и об ударе цилиндра по вязко-пластической пластинке (Ф. А. Бахшиян, 1948 — опубликование этой работы задержалось на ряд лет). С математической точки зрения уравнения динамики одноосного вязко-пластического тела принадлежат к классу уравнений параболического типа.  [c.303]


Смотреть страницы где упоминается термин 33 — Уравнения основные сред упруго-вязких : [c.219]    [c.178]    [c.14]    [c.165]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.134 , c.141 , c.146 , c.147 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.134 , c.146 , c.147 ]



ПОИСК



33 — Уравнения основные тел вязких

Вязко-упругость

Среда вязкая

Среда вязко-упругая

Среда упругая

Среда упруго-вязкая

Упругость среды

Уравнение основное

Уравнения Уравнения упругости

Уравнения для вязкой и упругой среды

Уравнения основные

Уравнения тел вязких

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте