Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение для собственных чисел круглой

В начале своей научной деятельности в университетском колледже Пирсон опубликовал несколько собственных научных работ по теории упругости, из числа которых особый интерес для специалистов представляет его исследование Об изгибе тяжелых балок под действием систем сплошных нагрузок ). В этой работе Пирсон обобщает теорию изгиба балок на случаи действия объемных сил, к которым, в частности и в первую очередь, относится сила тяжести. Из полного решения задачи для круглого и эллиптического поперечных сечений Пирсон заключает, что теорию Бернулли—Эйлера нельзя признать строгой для балок, находящихся под действием сплошных нагрузок, хотя, с другой стороны, результаты ее и близко сходятСя с получаемыми средствами точной теории . Некоторые из работ Пирсона представляют интерес для инженеров. Он исследовал изгиб неразрезных балок на упругих опорах ) и показал, что в такой постановке задача приводит к уравнениям, в которые входят значения моментов на пяти последовательных опорах. Он исследовал также важную для практики задачу о напряжениях в каменных плотинах ).  [c.410]


Далее, при составлении дифференциальных уравнений крутильных колебаний собственной массой отрезков вала между дисками обычно пренебрегают. В результате получается система сосредоточенных масс, связанных между собою упругими, но безынерционными отрезками круглого вала. Такая система имеет конечное число степеней свободы.  [c.230]


Теория упругости и пластичности (2002) -- [ c.0 ]



ПОИСК



Число собственное



© 2025 Mash-xxl.info Реклама на сайте