Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распределение давлений гармоническое произвольное

Метод расчета шума вращения винта вертолета на режиме полета вперед приведен в работе [S.24]. Метод состоит в том,, что движение винта считается установившимся (т. е. принимается стационарное распределение диполей), но учитывается нестационарность нагрузок, как это сделано в разд. 17.3.4. Предполагается, что измеренные или расчетные значения нагрузок известны и что подъемная сила равномерно распределена по хорде. Звуковое давление в произвольной точке поля определяется путем численного интегрирования по диску винта. Проведено сравнение результатов расчета шума вращения с результатами летных испытаний. Выяснено, что сходимость первой, гармоники звукового давления улучшилась (по сравнению с теорией Гутина, правильно оценивающей первую гармонику на режиме висения, но занижающей ее на режиме полета вперед) > Однако расчеты высших гармоник, начиная с третьей, были по-прежнему неудовлетворительны. В работе [S.23] этот метод, был уточнен путем учета действительного распределения давления по хорде. Использовался гармонический анализ распределения давления по диску винта, полученного пересчетом результатов измерений давления на поверхности лопасти. При таком подходе хорошая сходимость с экспериментом имела место по крайней мере до четвертой гармоники как на режиме висения, так. и при полете вперед. (В этой связи полезно напомнить, что при равномерном распределении нагрузки по хорде множители 1щы уменьшаются слишком быстро.) В работе даны примеры влияния высших гармоник нагрузки на расчетный уровень шума и сделан вывод, что для получения т-й гармоники шума вращения нужно знать гармоники нагрузки по крайней мере до-номера mN. По этому вопросу ряд данных имеется также в ра- боте [S.22].  [c.851]


Нагрузки, распределеннБге по гармоническому закону по двум поверхностям пластин. Дальнейшие рассуждения довольно очевидны. Так, в выражениях (5.46а) и (5.466) Z может принимать значения (Х 4- У ) , но выше использовались только отрицательные значения. Однако можно воспользоваться экспонентами с положительными и отрицательными показателями или, чцо более принято и удобно, комбинацией этшг экспонент, которые называются гиперболическими синусами и косинусами, и получить точное решение для произвольной величины давлений, распределенных по гармоническому закону как по верхней, так и по нижней поверхностям пластин. Напрймер, при записи решения 14, приведенного в таблице 3.1, можно использовать бигармоническую функцию  [c.331]


Гидродинамика (1947) -- [ c.500 ]



ПОИСК



Произвольный вид

Распределение давлений гармоническое

Распределение давления

Ряд гармонический

Фаз произвольное распределение



© 2025 Mash-xxl.info Реклама на сайте