Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расходимость н степень пространственной когерентности

На рис. 2.2 дана зависимость (0) = что значение У12 (0), близкое к единице, имеет место при очень малых г, следовательно, и (3. Таким образом, чем более узкий пучок, тем выше степень пространственной когерентности при (3 О имеем у (0) I =1. Если считать, что ух2 (О)] =0,88 еще допустимо, то угол (3 должен удовлетворять условию О < 3 < 0,16Я/р, т. е. чем больше р, тем меньше должен быть угол расходимости (3, в пределах которого излучение пространственно когерентно.  [c.22]


По распределению интенсивности излучения в плоскости фокусировки (перетяжки) и в фокальной плоскости оценивается диаметр пучка. Отнощение диаметра пучка в фокальной плоскости к фокусному расстоянию определяет геометрическую расходимость, т. е. угол распространения выходного излучения в пространстве. Геометрическую расходимость пучка с помощью оптической системы можно уменьшить до определенного предельного значения, которое характеризует реальную расходимость излучения. Если из резонатора выходит плоская волна, то геометрическая расходимость совпадает с реальной. Реальная расходимость излучения зависит от степени его пространственной когерентности. Реальную расходимость излучения определяли как отношение диаметра пучка в плоскости перетяжки к расстоянию от этой плоскости до плоскости, где фокусирующий пучок имеет диаметр, равный диаметру разрядного канала АЭ (20 мм).  [c.110]

Пример резонатора телескопического типа хорошо демонстрирует повышенные селективные свойства неустойчивых резонаторов, формируюш,их световые пучки с высокой степенью пространственной когерентности. Как известно, с точки зрения угловой селекции выгоднее работать в условиях относительно больших дифракционных потерь, так как дифракция обеспечивает срыв генерации в первую очередь мод высоких порядков. Поскольку для неустойчивого резонатора дифракционные (геометрические) потери всегда велики, то при его использовании фактически не требуется принимать какие-либо меры по дополнительной селекции поперечных мод. Лазер с неустойчивым резонатором генерирует обычно только основную поперечную моду (моду ТЕМоо) при этом часто достигается дифракционный предел расходимости. Заметим, что с точки зрения направленности излучения желательно иметь более высокие значения коэффициента расширения М (более высокие значения Л/дкв)-  [c.211]

Применение когерентного излучения. Высокая степень монохроматичности и малая расходимость когерентного оптического излучения определяют области его практического использования. Излучение с высокой временной когерентностью может быть использовано для передачи информации на оптических частотах при решении задач, связанных с оптической интерференцией (измерение расстояний, линейных и угловых скоростей, деформаций поверхностей и т. д.) в качестве стандарта частоты. Высокая направленность пространственно-когерентного излучения обусловливает ряд его преимуществ перед некогерентным излучением небольшую величину энергетических потерь, связанных с расходимостью пучка высокое угловое разрешение, поз- воляющее точно направить луч на малый объект и существенно сократить помехи возможность пространственной фильтрации при приеме сигналов. Отсюда следует, что узконапрявленное оптическое излучение может быть эффективно использовано при передаче информации на большие расстояния, при оптической локации удаленных объектов (особенно для выделения объекта среди других целей), при измерении углов и расстояний по принципу, на  [c.343]


Подавление ди акционных возмущений с помощью нарушения пространственной однородности или временной когерентности излучения. Дифракционные возмущения, возникающие в пучке вследствие интерференции дифрагированной и плоской волн, можнО устранить, вводя в пучок мелкомасштабные фазовые неоднородности, которые могут носить случайный или регулярный характер. Введение случайных фазовых неоднородностей, возможное, например, с помощью травленных в плавиковой кислоте стеклянных пластин, приводит к уширению угловой расходимости излучения до величины 0= (йр) , где р — характерный поперечный размер неоднородности. Подавление дифракции происходит за счет увеличения угловой расходимости, что ведет к уменьшению яркости излучения. Однако при использовании этого метода возможно восстановление высокой яркости при использовании эффектов ОВФ или усреднения (см. 4.3). Подавление дифракционно-интерференционных эффектов возможно не только при пространственном разупорядоче-нии пучка, но и при уменьшении степени его временной когерентности, характеризуемой длиной когерентности к=ст , где — время когерентности, связанное с шириной спектра излучения соотношением т =1/Ау. Для подавления дифракционных возмущений необходимо, чтобы длина когерентности была меньше длины развития дифракционных возмущений, следующей из формулы (4.25)  [c.157]


Принципы лазеров (1990) -- [ c.459 , c.460 ]



ПОИСК



Когерентная (-ое)

Когерентное пространственная

Когерентность

Когерентность пространственная

Когерентность степень

Пространственная когерентность степень

Расходимость



© 2025 Mash-xxl.info Реклама на сайте