Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение дифференциальное для объемного расширения

При подстановке выражений перемещений (1.8) следует исключить вторые производные /" (х) и g" (х) с помощью дифференциальных уравнений (1.6). Для объёмного расширения получим выражение  [c.385]

О ТОМ, что главные напряжения в каждой точке улругого тела пропорциональны соответственным главным удлинениям. Но наряду с упругим телом Коши рассматривал и неупругое тело и жидкость. В своей основной работе ), сообщение по которой было сделано ещё в 1822 г., в 3 Коши рассматривает движение внутри неупругой среды и вместо проекций смещений вводит проекции вектора скорости смещения и свою основную гипотезу формулирует так главные напряжения в каждой точке пропорциональны мгновенным главным удлинениям или сжатиям. На основании этой гипотезы Коши получает дифференциальные уравнения, отличающиеся от современных уравнений движения вязкой жидкости только отсутствием слагаемого с давлением. Затем он видоизменяет свою гипотезу, полагая напряжение состоящим из двух слагаемых, из которых первое считается пропорциональным мгновенным сжатиям или расширениям, а второе считается зависящим только от положения точки. Далее, второе слагаемое принимается пропорциональным скорости объёмного расширения. Вследствие этого получаются дифференциальные уравнения, сходные с уравненрмми движения вязкой сжимаемой жидкости. Таким образом, Кощи, создавая основные понятия теории упругости, вместе с этим установил и некоторые основные понятия теории движения вязкой жидкости.  [c.19]



Теория упругости (1970) -- [ c.127 ]



ПОИСК



Расширение дифференциальное

Расширение объемное



© 2025 Mash-xxl.info Реклама на сайте