Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Функция выборочная одномерная

Допустим, что J — выборочная функция гауссова процесса, причем XI не зависит от х/ при г Ф /. Тогда многомерная функция плотности вероятности будет произведением одномерных функций  [c.338]

Измерение нестационарных плотностей распределения, как видно из приведенных выражений, представляет собой задачу большой экспериментальной сложности даже для одномерной плотности распределения. Эта сложность обусловлена необходимостью перебора случайных величин по времени и по ансамблю реализаций. В общем случае требуется осреднение по ансамблю выборочных реализаций. Практически нестационарный случайный процесс представляет одна, максимум две-три реализации. В такой ситуации весьма ве шко желание подходить к нестационарному процессу как к эргодическому стационарному. В отдельных случаях осреднение по времени приводит к физически содержательным оценкам. Однако в большинстве случаев осреднение только по времени приводит к сильно искаженным оценкам, в частности при определении плотности распределения вероятности. Проиллюстрируем сказанное Ьледующим примером [2]. Рассмотрим некоторый случайный процесс при этом половина имеющихся реализаций представляет собой выборку из стационарного нормального процесса с нулевым математическим ожиданием и дисперсией а , а вторая половина реализации отличается от первой только значением дисперсии ст > ст . Другими словами функция p(t) представима в форме ступеньки в диапазоне О-Г  [c.19]



Справочник по надежности Том 3 (1970) -- [ c.125 ]



ПОИСК



Газ одномерный

Функция выборочная



© 2025 Mash-xxl.info Реклама на сайте