Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Вариньона в относительном движении

Если на материальную точку действуют несколько сил, то на основании теоремы Вариньона в правых частях предыдущих уравнений нужно писать сумму (геометрическую) моментов всех этих сил относительно данного центра или сумму (алгебраическую) их моментов относительно данной оси. В случае системы материальных точек, кинетическим моментом системы относительно данной точки или данной оси называется главный момент количеств движения всех материальных точек системы относительно этой точки или этой оси. Следовательно, если обозначить кинетический момент системы относительно точки О (начала координат) через 0 , а кинетические моменты системы относительно координатных осей через 0 , Оу, 0 , то  [c.380]


Для определения обратимся к рнс. Д6, б и рассмотрим движение шлра О как сложное, считая его движение по трубке относительным, а вращение самой трубки вокруг оси г — переносным движением. Тогда абсолютная скорость шара V = Уот-I-Упер. Поскольку шар О движется закону 8 = СВ = 0,4 t , то Уот = = 0,8 изображаем ректор Уот на рис. Д6, б с учетом знака в (прн 5<.0 направление Уот было бы противоположным) Затем, учитывая направление 0>. изображаем вектор Упер (Упер-ЬОЛ численно Упер = = ( >-0В. Тогда, по теореме Вариньона,  [c.78]


Смотреть страницы где упоминается термин Теорема Вариньона в относительном движении : [c.74]   
Курс теоретической механики 1973 (1973) -- [ c.331 ]

Курс теоретической механики 1981 (1981) -- [ c.225 ]

Теоретическая механика (1987) -- [ c.127 ]



ПОИСК



Вариньону)

Движение относительное

Относительность движения

Теорема Вариньона

Теорема Вариньона в движении относительно центра масс

Теорема Вариньона движения

Теорема Вариньона относительно оси

Теорема движения



© 2025 Mash-xxl.info Реклама на сайте