Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Регулирование тяги изменением направления вектора тяги

Регулирование тяги изменением направления вектора тяги 131  [c.131]

П.6. Коррекция с ограниченной тягой двигателя. Рассмотренная импульсная коррекция межпланетной траектории КА отвечает идеализированному случаю использования двигателя с неограниченно большой тягой. Естественно возникает вопрос, как изменятся полученные рекомендации для оптимальной по расходу топлива стратегии проведения коррекции при использовании двигателя с ограниченной тягой. Такая задача исследована в работе [П.2] в обш ей постановке, когда допускается регулирование тяги двигателя от нуля до заданной максимальной величины при условии, что скорость истечения газов из сопла остается неизменной. Определяется оптимальный закон изменения вектора тяги по времени (т. е. величина и направление) из условия минимизации суммарных затрат топлива на коррекцию известных ошибок терминальных параметров движения.  [c.434]


В поворотных системах весь двигатель, сопло или выхлопные патрубки турбины установлены в подшипниках и могут поворачиваться в пределах какого-то угла с изменением направления вектора тяги. Это наиболее распространенный способ управления (маршевые двигатели Н-1 и F-1 ракет-носителей семейства Сатурн , маршевый двигатель ВКС Спейс Шаттл SSME, RL-10, ЖРД с центральным телом), так как характеризуется минимальными потерями удельного импульса. Газовые рули и дефлекторы изменяют направление движения газового потока на выходе из сопла. Они доказали свою высокую надежность, но подвержены сильной эрозии и их применение приводит к потерям осевой тяги. Вторичньш впрыск рабочего тела (газа или жидкости) через стенку расширяющейся части сопла в основной поток продуктов сгорания приводит к возникновению косых скачков уплотнения, вызывающих изменение направления истечения части газа. Вспомогательные управляющие сопла постепенно эволюционировали к ЖРД малой тяги, которые также используются для управления космическим аппаратом и регулирования скорости полета при выключенном маршевом двигателе. Маленькие верньерные ЖРД применялись на ракетах Тор и Атлас . Они же используются в системе реактивного управления ВКС Спейс Шаттл .  [c.201]

Для управления полетом требуется изменять величину и направление вектора тяги ракетного двигателя. Изменение тяги по величине, или регулирование тяги, бывает желательным в разных пределах — от нескольких процентов для маршевых двигателей ускорителя до 1 10 при посадке на Луну или другие планеты ( Рейнджер , лунный модуль КК Аполлон , ЖРД RL-10) и до 1 100 при встрече и стыковке космических аппаратов. Управление вектором тяги позволяет изменять положение космического аппарата, создавая моменты по углам тангажа, рыскания и крена. Моменты, создаваемые по углу тангажа, поднимают или опускают нос аппарата, по углу рыскания поворачивают аппарат влево или вправо, по углу крена вызывают поворот относительно его продольной оси. В общеЫ случае вектор тяги проходит через центр масс космического аппарата и направлен вдоль его оси, поэтому управление пО каналам тангажа и рыскания можно осуществлять угловы отклонением вектора тяги маршевого двигателя, тогда как уп равление по каналу крена требует наличия по меньшей мере двух газовых рулей в сопле или двух сопел.  [c.200]



Смотреть главы в:

Ракетные двигатели  -> Регулирование тяги изменением направления вектора тяги



ПОИСК



Направление вектора

Регулирование тяги ЖРД

Тяга 671, VII



© 2025 Mash-xxl.info Реклама на сайте