Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поведение траекторий, близких к орбитно-устойчивым траекториям

Поведение траекторий, близких к орбитно-устойчивым траекториям. Как и раньше, предложения, относящиеся к полутраекториям, мы будем формулировать только для положительной полутраектории.  [c.291]

Свойство орбитной устойчивости и неустойчивости полутраектории и траектории характеризует поведение этой полутраектории или траектории не самой по себе, а по отношению к близким полутраекториям и траекториям.  [c.52]

С ним мы столкнемся только при рассмотрении неконсервативных систем. Хотя, как мы только что видели, периодические движения в консервативных системах, вообще говоря, неустойчивы по Ляпунову, однако они все же обладают некоторым видом устойчивости. Именно — достаточно близкая траектория всегда лежит целиком в непосредственном соседстве с рассматриваемой. Такой вид устойчивости носит название орбитной устойчивости эта устойчивость играет существенную роль в общей теории поведения интегральных кривых.  [c.151]


Введенное таким образом понятие орбитной устойчивости и неустойчивости полутраектории и траектории характеризует поведение этой полутраектории или траектории не самой по себе, а по отношению к близким полутраекториям и траекториям. Поясним эти понятия на примерах траекторий, встречавшихся в рассмотренных выше динамических системах. Очевидно, всякая полутраектория, стремящаяся к состоянию равновесия типа узел или фокус, орбитноустойчива ). Орбитно-устойчивыми будут и все полутраектории, стремящиеся к предельным циклам. Орбитно-устойчивыми, т. е. неособыми траекториями, очевидно, будут траектории, стремящиеся при >-- -со п —-оо к узлам или фокусам или при / —со ( - — оо) стремящиеся к узлу, а при — оо ( - - - схэ) — к предельному циклу, а также траектории, стремящиеся к предельным циклам и при - -оо, и при — со (все такие траектории орбитно-устойчивы и при при — оо).  [c.414]


Смотреть главы в:

Качественная теория динамических систем второго порядка  -> Поведение траекторий, близких к орбитно-устойчивым траекториям



ПОИСК



Поведени

Траектория

Траектория е-траектория

Устойчивость орбитная

Устойчивость траектории



© 2025 Mash-xxl.info Реклама на сайте