Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Среда с диссипацией. Некоторые решения уравнения Бюргерса

Эти простые формулы имеют, однако, ограниченную применимость. Прежде всего это связано с учетом диссипации хотя бы в рамках обобщенного уравнения Бюргерса (2.1). Оно уже не может быть приведено к уравне]шю с постоянными коэффициентами, и для него известны лишь некоторые приближенные решения. В решении (3.5) считается, что ударный фрош импульса близок к стациотрному, тогда его структура такая же, как в плоской волне (поскольку толщина фронта 6 = где V — кинематическая вязкость среды, заведомо мала по сравнению с радиусом его кривизны). Ясно, однако, что это справедливо лишь пока акустическое число Рейнольдса Ке //6 достаточно велико. Для плоской волны в виде одиночного импульса это условие всегда выполняется (если оно выполнялось вначале). Действительно, на больших расстояниях длина такого импульса / растет как у/У, а амплитуда падает как jyfx, т.е. 6 1/и Поэтому Ке остается постоянным, и если в начальный момент Ке > I, то ударный фронт всегда узок по сравнению с общей длиной импульса. Поэтому волна остается нелинейной до конца процесса.  [c.83]



Смотреть главы в:

Нелинейные волновые процессы в акустике  -> Среда с диссипацией. Некоторые решения уравнения Бюргерса



ПОИСК



Бюргерса

Диссипация

Уравнение Бюргерса



© 2025 Mash-xxl.info Реклама на сайте