Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб балки при не чисто упругой работе материала

Изгиб балки при не чисто упругой работе материала  [c.257]

Предварительные замечания. Рассмотрим изгиб балки (чистый и отдельно поперечный), при котором в части ее объема материал испытывает чисто упругую деформацию, а в остальной — упругопластическую, в частности, чисто пластическую. Как и в случае упругой работы балки при изгибе, будем считать, что зависимость продольных деформаций волокон от их расстояния до нейтрального слоя линейна Ег = У/Р- В частности, такая зависимость получается при использовании гипотезы плоских сечений.  [c.257]


Разнородные элементы, из которых составлена балка, должны быть соединены так, чтобы обеспечивалась нх совместная работа. В таком случае поперечные сечения балки при чистом изгибе остаются плоскими. В приводимых формулах предполагается, что плоскость симметрии сечения совпадает с плоскостью действия изгибающею момента М и поперечной силы Q. Сечение балки из разнородных материалов приводится к сечению однородной балки путем умножения площади каждой работающей части сечения на отношение модуля продольной упругости ее материала к модулю упругости, выбираемому за основной.  [c.94]

Второе предположение состоит в том, что нормальные напряжения, действующие на площадках, параллельных оси балки, считаются равными нулю. Если отсутствие этих напряжений в чисто упругой балке при чистом изгибе подтверждается строгой теорией, то в случае работы материала балки в упруго-пЛастической области обнаруживается, что, вследствие неодинаковости коэффициента Пуассона в пластической и упругой областях (в первой р = 0,5, а во второй р<0,5), возникают самоуравновешенные нормальные напряжения на плоскостях, параллельных нейтральному слою, а также касательные напряжения. Как показывает эксперимент, неучет этого взаимодействия волокон, параллельных оси, не влечет за собой заметной погрешности и является приемлемым.  [c.257]

Малый параметр может быть введен в теории пластичности различным образом. А. А. Ильюшин [58] использовал в качестве малого параметра величину, обратную модулю объемного сжатия, и исследовал нормальные и касательные напряжения при чистом изгибе балки за пределом упругости. Отметим, что вопросы, связанные с линеаризацией по коэффициенту Пуассона, рассмотрены ниже в Добавлении. Методом малого параметра, характеризующего геометрию тел, Л. М. Качанов [63, 64] рассмотрел кручение круглых стержней переменного диаметра и ползучесть овальных и разностенных труб. В работе [30] малый параметр характеризует различие между плоским деформированным и осесимметричным состояниями. Б. А. Друянов [13, 14] при помощи метода малого параметра учел неоднородность пластического материала. Здесь малый параметр характеризовал возмущение условия пластичности. Свойства пластического материала характеризует малый параметр в работах Л. А. Толоконникова и его сотрудников [76—78], а также в [83].  [c.9]


Смотреть главы в:

Прикладная механика твердого деформируемого тела Том 2  -> Изгиб балки при не чисто упругой работе материала



ПОИСК



350 — Упругость при изгибе

Балка материалов

Изгиб балки чистый

Изгиб балок

Изгиб чистый

Материалы упругие

Работа с материалами

Работа сил упругой

Работа упругости



© 2025 Mash-xxl.info Реклама на сайте